Skip to main content

Optimisation of Wind System Conversion

  • Chapter
  • First Online:
Wind Power Electric Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Due to the nonlinear characteristic of the wind turbine, it is difficult to maintain the maximum power output of the wind turbine for all wind speed conditions. In research survey, several methods are used to track the maximum power point of the wind turbine. The most used method are the Hill climb searching or P&O, the Tip Speed Ratio (TSR), Power Signal Feedback (PSF),… The P&O is a popular method due to its simplicity and independence of system characteristics. The TSR direction control method is limited by the difficulty in wind speed and turbine speed measurements. And the PSF method requires the knowledge of the wind turbine’s maximum power curve, and tracks this curve through its control mechanisms. Other advanced methods are used to solve the problem of power maximization. The most used are Sliding Mode Control (SMC), Fuzzy Logic Controller (FLC), Adaptive Fuzzy Logic Controller (AFLC), Particle Swarm Optimization (PSO), Radial Basis Function Network (WRBFM), Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS),…Each method perform with its own proprieties (precision, stability, simplicity, robustness, model,…). Generally, they are used in the design of adaptive and intelligent systems since they are able to solve problems from previous examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Q, Chang L (2004) An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans Power Electron 19(5):1242–1249

    Article  Google Scholar 

  2. Mirecki A (2005) Phd Thesis, Institut National Polytechnique de Toulouse, France

    Google Scholar 

  3. Koutroulis E, Kalaitzakis K (2006) Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Industr Electron 53(2):486–494

    Article  Google Scholar 

  4. Raza KSM, Goto H, Guo H, Ichinokura O (2008) A novel algorithm for fast and efficient maximum power point tracking of wind energy conversion systems. In: Proceedings of the 2008 international conference on electrical machines, pp 1–6

    Google Scholar 

  5. González LG, Figueres E, Garcerá G, Carranza O (2010) Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems. Appl Energy 87:2304–2312

    Google Scholar 

  6. Soetedjo A, Lomi A, Mulayanto WP (2011) Modeling of wind energy system with MPPT control. In: International conference on electrical engineering and informatics, Bandung, Indonesia, 17–19 July 2011

    Google Scholar 

  7. Lin WM, Hong CM (2011) Wind Turbines, Chap. 13. InTech book

    Google Scholar 

  8. Serban I, Marinescu C (2012) A sensorless control method for variable-speed small wind turbines. Renewable Energy 43:256–266

    Google Scholar 

  9. Merabet Boulouiha H, Allali A, Tahri A, Draou A, Denaï M (2012) A simple maximum power point tracking based control strategy applied to a variable speed squirrel cage induction generator. J Renewable Sustain Energy 4(5)

    Google Scholar 

  10. Raza KSM, Goto H, Guo H, Ichinokura O (2010) Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system. IEEE energy conversion congress and exposition (ECCE’2010), pp 4075–82

    Google Scholar 

  11. Wang Q, Chang L (2003) An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans Power Electron 19(5):1242–1249

    Google Scholar 

  12. Shirazi M, Viki AH, Babayi O (2009) A comparative study of maximum power extraction strategies in PMSG wind turbine system. In: IEEE electrical power & energy conference (EPEC’2009), pp 1–6

    Google Scholar 

  13. Morimoto S, Nakayama H, Sanada M, Takeda Y (2005) Sensorless output maximization control for variable-speed wind generation system using IPMSG. IEEE Trans Ind Appl 41(1)

    Google Scholar 

  14. Wai RJ, Lin CY, Chang YR (2007) Novel maximum-power extraction algorithm for PMSG wind generation system. IET Electr Power Appl 1(2):275–283

    Article  Google Scholar 

  15. Femia N, Granozio D, Petrone G, Spagnuolo G, Vitelli M (2007) Predictive & adaptive MPPT perturb and observe method. IEEE Trans Aerosp Electron Syst 43(3):934–950

    Google Scholar 

  16. Hui J, Bakhshai A (2008) A fast and effective control algorithm for maximum power point tracking in wind energy systems. In: Proceedings of the 2008 world wind energy conference, pp 1–10

    Google Scholar 

  17. Molina MG, Mercado PE (2008) A new control strategy of variable speed wind turbine generator for three-phase grid-connected applications. In: Transmission and distribution conference and exposition, IEEE/PES, Bogota, Colombia, 13–15 Aug 2008

    Google Scholar 

  18. Lalouni S, Rekioua D, Rekioua T, Matagne E (2009) Fuzzy logic control of stand-alone photovoltaic system with battery storage. J Power Sources 193:899–907

    Article  Google Scholar 

  19. Salas V, Olias E, Barrado A, Lazaro A (2006) Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol Energy Mater Sol Cells 90(11):1555–1578

    Article  Google Scholar 

  20. Yaoqin J, Zhongqing Y, Binggang C (2002) A new maximum power point tracking control scheme for wind generation. In: International conference on power system technology (PowerCon’2002), 13–17 Oct 2002, pp 144–148

    Google Scholar 

  21. Martinez-Rojas M, Sumper A, Gomis-Bellmunt O (2010) Reactive power management in wind farms using PSO technique. In: EPE J

    Google Scholar 

  22. Das DC, Roy AK, Sinha N (2011) PSO optimized frequency controller for wind-solar thermal-diesel hybrid energy generation system: a study. Int J Wisdom Based Comput 1(3):128–133

    Google Scholar 

  23. Mohandes M et al (2011) Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy. doi:10.1016/j.apenergy.2011.04.015

    Google Scholar 

  24. Dadone A, Dambrosio L (1999) Estimator-based adaptive fuzzy logic control technique for a wind turbine-induction generator system. In: Proceedings of the 7th Mediterranean conference on control and automation (MED99) Haifa, Israel, 28-30 June 1999

    Google Scholar 

  25. Swierczynski M, Teodorescu R, Rasmussen CN, Rodriguez P, Vikelgaard H (2010) Overview of the energy storage systems for wind power integration enhancement. In: Proceedings of the IEEE international symposium on industrial electronics, ISIE 2010. IEEE Press, p 3749–3756

    Google Scholar 

  26. Wang W (2012) Vanadium Redox flow batteries improving the performance and reducing the cost of vanadium redox flow batteries for large-scale energy storage. Report of Pacific Northwest national laboratory, Oct 2012

    Google Scholar 

  27. Comparison of different battery technologies (2006) General Electronics Battery Co. Ltd., p 1–4. www.tradekorea.com/product/file/download.mvc;…TK

  28. Britton DL, Miller TB (2000) Battery fundamentals and operations-batteries for dummies, Apr 2000

    Google Scholar 

  29. Linden D (2002) Handbook of batteries and fuel cells, 3rd edn. Mcgraw-Hill, New York

    Google Scholar 

  30. Divya KC, Stergaard J (2009) Battery energy storage technology for power systems—an overview. Electr Power Syst Res 79:511–520

    Article  Google Scholar 

  31. Hussien ZF, WC Lee, Siam M, Ismail AB (2007) Modeling of sodium sulfur battery for power system applications. Elektrika 9(2):66–72. (http://fke.utm.my/elektrik)

    Google Scholar 

  32. Survey of Energy Storage Options in Europe (2010) Report © London Research International Ltd, London, Mar 2010

    Google Scholar 

  33. Piemontesi M, Dustmann C (2010) Energy storage systems for ups and energy management at consumer level; (www.battcon.com/papersfinal2010/piemontesipaper2010final_5.pdf

  34. Manzoni R, Metzger M, Crugnola G (2008) Zebra electric energy storage system: from R&D to market. Presented at HTE hi.tech.expo—Milan 25–28 Nov 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamila Rekioua .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Rekioua, D. (2014). Optimisation of Wind System Conversion. In: Wind Power Electric Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6425-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6425-8_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6424-1

  • Online ISBN: 978-1-4471-6425-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics