Skip to main content

Green Functions

  • Chapter
  • First Online:
  • 3588 Accesses

Part of the book series: Universitext ((UTX))

Abstract

The Green function is a function devised by George Green in 1828 to construct solutions of Poisson’s equation \(\triangle u = f\) on a domain in \(R^n\). Following a formal definition of the Green function, it is shown that every open subset of \(R^n, n \ge 3\), has a Green function whereas \(R^2\) does not have a Green function nor do domains in \(R^2\) whose complements are “too small”. A classical method of constructing Green functions, known as “the method of images”, is illustrated by way of exercises. The potential energy of a unit mass at a point of \(R^n\) due to a mass distributed in a region of \(R^n\) is an example of a Green potential of a measure. This concept is extended to regions having a Green functions and to signed measures on the region. Properties of Green potentials are used to characterize superharmonic functions and to construct a potential on a region known as the “Lebesgue Spine” to show that there are regions for which the solution of the Dirichlet problem for the region does not take on the value of the boundary function at the cusp of the spine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Green, G.: An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. Nottingham (1828)

    Google Scholar 

  2. Osgood, W.F.: On the existence of the Green’s function for the most general simply connected plane region. Trans. Amer. Math. Soc. 1, 310–314 (1900)

    Google Scholar 

  3. Challis, L.J.: George green-miller, mathematician, and physicist. Math. Spectr. 20, 45–52 (1987)

    Google Scholar 

  4. Bôcher, M.: Singular points of functions which satisfy partial differential equations of elliptic type. Bull. Amer. Math. Soc. 9, 455–465 (1903)

    Google Scholar 

  5. Pinsky, M.A.: Partial Differrential Equations and Boundary Value Problems with Applications. McGraw- Hill, Boston (1998)

    Google Scholar 

  6. Poincaré, H.: Sur les equations aux dérivées partielles de la physique mathématique. Amer. J. Math. 12, 211–294 (1890)

    Google Scholar 

  7. Lebesgue, H.: Sur des cas d’impossibilitié du problème du dirichlet ordinaire. C.R. Séances Soc. Math. France 17 (1912)

    Google Scholar 

  8. Lebesgue, H.: Oeuvres Scientifiques. L’Enseignement Mathématiques, Institut de Mathématiques, Université de Genève (1972–1973)

    Google Scholar 

  9. Nec̆as, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson et Cie, Éditeurs, Paris (1967)

    Google Scholar 

  10. Schwartz, L.: Théorie des Distributions 1. Hermann, Paris (1950)

    Google Scholar 

  11. Cartan, H.: Sur les fondements de la théorie du potentiel. Bull. Soc. Math. 69, 71–96 (1941)

    Google Scholar 

  12. Cartan, H.: Théorie du potentiel newtonien: énergie, capacité, suites de potentiels. Bull. Soc. Math. 73, 74–106 (1945)

    Google Scholar 

  13. Cartan, H.: Théorie générale du balayage en potentiel newtonien. Ann. Univ. Grenoble Math. Phys. 22, 221–280 (1946)

    Google Scholar 

  14. Riesz, F.: Sur les fonctions subharmoniques et leur rapport à la theéorie du potentiel. Acta Math. 54, 321–360 (1930)

    Google Scholar 

  15. Evans, G.C.: On potentials of positive mass. I. Trans. Amer. Math. Soc. 37, 226–253 (1935)

    Google Scholar 

  16. Vasilesco, F.: Sur la continuité du potentiel à travers des masses et la démonstration d’une lemme de Kellogg. C.R. Acad. Sci. Paris 200, 1173–1174 (1935)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester L. Helms .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Helms, L.L. (2014). Green Functions. In: Potential Theory. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-6422-7_4

Download citation

Publish with us

Policies and ethics