Skip to main content

Thrombocytopenia-Associated Multiple Organ Failure Syndrome

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Thrombocytopenia-associated multiple organ failure (TAMOF) is a clinical syndrome often managed by critical care physicians. It is characterized by new onset thrombocytopenia in the setting of evolving multiple organ failure. TAMOF is an entity within the family of thrombotic microangiopathies, a spectrum of mixed coagulopathies and thrombotic disorders that include thrombotic thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS) on one end of the spectrum and disseminated intravascular coagulation (DIC) on the other. Autopsies performed in patients who have succumbed to DIC, TTP and HUS reveal disseminated microvascular thromboses with distinct findings that help to differentiate these three entities. Furthermore, our biologic and molecular understanding of the pathophysiologic processes governing DIC, TTP and HUS have significantly expanded and allow better laboratory delineation among these three entities. Tissue factor plays a pivotal role in the initiation and propagation of DIC. Von Willebrand factors and deficient ADAMTS-13 (a.k.a von Willebrand factor-cleaving proteinase) drive the pathology in TTP. Shiga toxins and the complement pathway drive the pathology in HUS. With better understanding of the biology of TAMOF syndrome, innovative therapies are currently being evaluated with the hope of reversing this destructive pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nadel S, Goldstein B, Williams MD, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369(9564):836–43.

    Article  CAS  PubMed  Google Scholar 

  2. Khemani RG, Bart RD, Alonzo TA, Hatzakis G, Hallam D, Newth CJ. Disseminated intravascular coagulation score is associated with mortality for children with shock. Intensive Care Med. 2009;35(2):327–33.

    Article  PubMed  Google Scholar 

  3. Dhainaut JF, Yan SB, Joyce DE, et al. Treatment effects of drotrecogin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. J Thromb Haemost. 2004;2(11):1924–33.

    Article  CAS  PubMed  Google Scholar 

  4. Szczepiorkowski ZM, Winters JL, Bandarenko N, et al. Guidelines on the use of therapeutic apheresis in clinical practice–evidence-based approach from the apheresis applications committee of the American Society for Apheresis. J Clin Apher. 2010;25(3):83–177.

    Article  PubMed  Google Scholar 

  5. Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325(6):398–403.

    Article  CAS  PubMed  Google Scholar 

  6. Rock GA, Shumak KH, Buskard NA, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393–7.

    Article  CAS  PubMed  Google Scholar 

  7. Frank C, Werber D, Cramer JP, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011;365(19):1771–80.

    Article  CAS  PubMed  Google Scholar 

  8. Garg AX, Suri RS, Barrowman N, et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA J Am Med Assoc. 2003;290(10):1360–70.

    Article  CAS  Google Scholar 

  9. Kaplan BS, Meyers KE, Schulman SL. The pathogenesis and treatment of hemolytic uremic syndrome. J Am Soc Nephrol. 1998;9(6):1126–33.

    CAS  PubMed  Google Scholar 

  10. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(17):1676–87.

    Article  CAS  PubMed  Google Scholar 

  11. Kwan HC. Thrombotic microangiopathy. Semin Hematol. 1987;24:69–81.

    Google Scholar 

  12. Kwan HC. Miscellaneous secondary thrombotic microangiopathy. Semin Hematol. 1987;24:141–7.

    Google Scholar 

  13. Besbas N, Karpman D, Landau D, et al. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int. 2006;70(3):423–31.

    Article  CAS  PubMed  Google Scholar 

  14. Asada Y, Sumiyoshi A, Hayashi T, Suzumiya J, Kaketani K. Immunohistochemistry of vascular lesion in thrombotic thrombocytopenic purpura, with special reference to factor VIII related antigen. Thromb Res. 1985;38(5):469–79.

    Article  CAS  PubMed  Google Scholar 

  15. Burke AP, Mont E, Kolodgie F, Virmani R. Thrombotic thrombocytopenic purpura causing rapid unexpected death: value of CD61 immunohistochemical staining in diagnosis. Cardiovasc Pathol. 2005;14(3):150–5.

    Article  PubMed  Google Scholar 

  16. Tsai HM, Chandler WL, Sarode R, et al. von Willebrand factor and von Willebrand factor-cleaving metalloprotease activity in Escherichia coli O157:H7-associated hemolytic uremic syndrome. Pediatr Res. 2001;49(5):653–9.

    Article  CAS  PubMed  Google Scholar 

  17. Richardson SE, Karmali MA, Becker LE, Smith CR. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum Pathol. 1988;19(9):1102–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hosler GA, Cusumano AM, Hutchins GM. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities. A review of 56 autopsy cases. Arch Pathol Lab Med. 2003;127(7):834–9.

    PubMed  Google Scholar 

  19. Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med. 1999;341(8):586–92.

    Article  CAS  PubMed  Google Scholar 

  20. Taylor Jr FB, Toh CH, Hoots WK, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86(5):1327–30.

    CAS  PubMed  Google Scholar 

  21. Gando S, Saitoh D, Ogura H, et al. Natural history of disseminated intravascular coagulation diagnosed based on the newly established diagnostic criteria for critically ill patients: results of a multicenter, prospective survey. Crit Care Med. 2008;36(1):145–50.

    Article  PubMed  Google Scholar 

  22. Levi M, van der Poll T. Disseminated intravascular coagulation: a review for the internist. Intern Emerg Med. 2013;8(1):23–32.

    Article  PubMed  Google Scholar 

  23. Levi M. Disseminated intravascular coagulation. Crit Care Med. 2007;35(9):2191–5.

    Article  CAS  PubMed  Google Scholar 

  24. Conkling PR, Greenberg CS, Weinberg JB. Tumor necrosis factor induces tissue factor-like activity in human leukemia cell line U937 and peripheral blood monocytes. Blood. 1988;72(1):128–33.

    CAS  PubMed  Google Scholar 

  25. Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986;163(3):740–5.

    Article  CAS  PubMed  Google Scholar 

  26. van der Poll T, Levi M, Hack CE, et al. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med. 1994;179(4):1253–9.

    Article  PubMed  Google Scholar 

  27. Levi M, van der Poll T, ten Cate H, van Deventer SJ. The cytokine-mediated imbalance between coagulant and anticoagulant mechanisms in sepsis and endotoxaemia. Eur J Clin Investig. 1997;27(1):3–9.

    Article  CAS  Google Scholar 

  28. Pixley RA, De La Cadena R, Page JD, et al. The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia. In vivo use of a monoclonal anti-factor XII antibody to block contact activation in baboons. J Clin Investig. 1993;91(1):61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Biemond BJ, Levi M, ten Cate H, et al. Complete inhibition of endotoxin-induced coagulation activation in chimpanzees with a monoclonal Fab fragment against factor VII/VIIa. Thromb Haemost. 1995;73(2):223–30.

    CAS  PubMed  Google Scholar 

  30. Levi M, ten Cate H, Bauer KA, et al. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees. J Clin Investig. 1994;93(1):114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taylor Jr FB, Chang A, Ruf W, et al. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock. 1991;33(3):127–34.

    PubMed  Google Scholar 

  32. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106(5):1604–11.

    Article  PubMed  CAS  Google Scholar 

  33. Mandal SK, Iakhiaev A, Pendurthi UR, Rao LV. Acute cholesterol depletion impairs functional expression of tissue factor in fibroblasts: modulation of tissue factor activity by membrane cholesterol. Blood. 2005;105(1):153–60.

    Article  CAS  PubMed  Google Scholar 

  34. Levi M, de Jonge E, van der Poll T. Rationale for restoration of physiological anticoagulant pathways in patients with sepsis and disseminated intravascular coagulation. Crit Care Med. 2001;29(7 Suppl):S90–4.

    Article  CAS  PubMed  Google Scholar 

  35. Madach K, Aladzsity I, Szilagyi A, et al. 4G/5G polymorphism of PAI-1 gene is associated with multiple organ dysfunction and septic shock in pneumonia induced severe sepsis: prospective, observational, genetic study. Crit Care. 2010;14(2):R79.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nguyen TC, Han YY, Kiss JE, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure*. Crit Care Med. 2008;36(10):2878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Green J, Doughty L, Kaplan SS, Sasser H, Carcillo JA. The tissue factor and plasminogen activator inhibitor type-1 response in pediatric sepsis-induced multiple organ failure. Thromb Haemost. 2002;87(2):218–23.

    CAS  PubMed  Google Scholar 

  38. Madoiwa S, Nunomiya S, Ono T, et al. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. Int J Hematol. 2006;84(5):398–405.

    Article  CAS  PubMed  Google Scholar 

  39. Di Nisio M, Baudo F, Cosmi B, et al. Diagnosis and treatment of disseminated intravascular coagulation: guidelines of the Italian Society for Haemostasis and Thrombosis (SISET). Thromb Res. 2012;129(5):e177–84.

    Article  PubMed  CAS  Google Scholar 

  40. Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol. 2009;145(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  41. Wada H, Thachil J, Di Nisio M, et al. Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines. J Thromb Haemost. 2013. Epub ahead of print.

    Google Scholar 

  42. Wada H, Asakura H, Okamoto K, et al. Expert consensus for the treatment of disseminated intravascular coagulation in Japan. Thromb Res. 2010;125(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  43. Moschcowitz E. A hitherto undescribed disease. Proc N Y Pathol Soc. 1924;24:21–4.

    Google Scholar 

  44. Moake JL, Rudy CK, Troll JH, et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–5.

    Article  CAS  PubMed  Google Scholar 

  45. Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347(8):589–600.

    Article  CAS  PubMed  Google Scholar 

  46. Levy GG, Nichols WC, Lian EC, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413(6855):488–94.

    Article  CAS  PubMed  Google Scholar 

  47. Kokame K, Matsumoto M, Soejima K, et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci U S A. 2002;99(18):11902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsumoto M, Kokame K, Soejima K, et al. Molecular characterization of ADAMTS13 gene mutations in Japanese patients with Upshaw-Schulman syndrome. Blood. 2004;103(4):1305–10.

    Article  CAS  PubMed  Google Scholar 

  49. Pimanda JE, Maekawa A, Wind T, Paxton J, Chesterman CN, Hogg PJ. Congenital thrombotic thrombocytopenic purpura in association with a mutation in the second CUB domain of ADAMTS13. Blood. 2004;103(2):627–9.

    Article  CAS  PubMed  Google Scholar 

  50. Schneppenheim R, Budde U, Oyen F, et al. von Willebrand factor cleaving protease and ADAMTS13 mutations in childhood TTP. Blood. 2003;101(5):1845–50.

    Article  CAS  PubMed  Google Scholar 

  51. Uchida T, Wada H, Mizutani M, et al. Identification of novel mutations in ADAMTS13 in an adult patient with congenital thrombotic thrombocytopenic purpura. Blood. 2004;104(7):2081–3.

    Article  CAS  PubMed  Google Scholar 

  52. Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Furlan M, Robles R, Galbusera M, et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998;339(22):1578–84.

    Article  CAS  PubMed  Google Scholar 

  54. Fowler WE, Fretto LJ, Hamilton KK, Erickson HP, McKee PA. Substructure of human von Willebrand factor. J Clin Investig. 1985;76(4):1491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wagner DD, Lawrence SO, Ohlsson-Wilhelm BM, Fay PJ, Marder VJ. Topology and order of formation of interchain disulfide bonds in von Willebrand factor. Blood. 1987;69(1):27–32.

    CAS  PubMed  Google Scholar 

  56. Vischer UM, Wagner DD. von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel-Palade bodies. Blood. 1994;83(12):3536–44.

    CAS  PubMed  Google Scholar 

  57. Bowie EJ, Solberg Jr LA, Fass DN, et al. Transplantation of normal bone marrow into a pig with severe von Willebrand’s disease. J Clin Investig. 1986;78(1):26–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sadler JE. Biochemistry and genetics of von Willebrand factor. Ann Rev Biochem. 1998;67:395–424.

    Article  CAS  PubMed  Google Scholar 

  59. Tsai HM, Nagel RL, Hatcher VB, Seaton AC, Sussman II. The high molecular weight form of endothelial cell von Willebrand factor is released by the regulated pathway. Br J Haematol. 1991;79(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  60. Bernardo A, Ball C, Nolasco L, Moake JF, Dong JF. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104(1):100–6.

    Article  CAS  PubMed  Google Scholar 

  61. Wagner DD. Cell biology of von Willebrand factor. Annu Rev Cell Biol. 1990;6:217–46.

    Article  CAS  PubMed  Google Scholar 

  62. Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell. 1986;46(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  63. Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Investig. 1986;78(6):1456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arya M, Anvari B, Romo GM, et al. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood. 2002;99(11):3971–7.

    Article  CAS  PubMed  Google Scholar 

  65. Chow TW, Turner NA, Chintagumpala M, et al. Increased von Willebrand factor binding to platelets in single episode and recurrent types of thrombotic thrombocytopenic purpura. Am J Hematol. 1998;57(4):293–302.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou W, Inada M, Lee TP, et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Investig J Tech Methods Path. 2005;85(6):780–8.

    Article  CAS  Google Scholar 

  67. Liu L, Choi H, Bernardo A, et al. Platelet-derived VWF-cleaving metalloprotease ADAMTS-13. J Thromb Haemost. 2005;3(11):2536–44.

    Article  CAS  PubMed  Google Scholar 

  68. Turner N, Nolasco L, Tao Z, Dong JF, Moake J. Human endothelial cells synthesize and release ADAMTS-13. J Thromb Haemost. 2006;4(6):1396–404.

    Article  CAS  PubMed  Google Scholar 

  69. Moake J. Thrombotic microangiopathies: multimers, metalloprotease, and beyond. Clin Transl Sci. 2009;2(5):366–73.

    Article  CAS  PubMed  Google Scholar 

  70. Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(4):1035–50.

    Article  CAS  PubMed  Google Scholar 

  71. Constantinescu AR, Bitzan M, Weiss LS, et al. Non-enteropathic hemolytic uremic syndrome: causes and short-term course. Am J Kidney Dis. 2004;43(6):976–82.

    Article  PubMed  Google Scholar 

  72. Tarr PI, Gordon CA, Chandler WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005;365(9464):1073–86.

    CAS  PubMed  Google Scholar 

  73. Gould LH, Demma L, Jones TF, et al. Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000–2006. Clin Infect dis. 2009;49(10):1480–5.

    Article  PubMed  Google Scholar 

  74. Johannes L, Romer W. Shiga toxins–from cell biology to biomedical applications. Nat Rev Microbiol. 2010;8(2):105–16.

    CAS  PubMed  Google Scholar 

  75. van Setten PA, Monnens LA, Verstraten RG, van den Heuvel LP, van Hinsbergh VW. Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release. Blood. 1996;88(1):174–83.

    PubMed  Google Scholar 

  76. Karpman D, Papadopoulou D, Nilsson K, Sjogren AC, Mikaelsson C, Lethagen S. Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood. 2001;97(10):3100–8.

    Article  CAS  PubMed  Google Scholar 

  77. Nestoridi E, Tsukurov O, Kushak RI, Ingelfinger JR, Grabowski EF. Shiga toxin enhances functional tissue factor on human glomerular endothelial cells: implications for the pathophysiology of hemolytic uremic syndrome. J Thromb Haemost. 2005;3(4):752–62.

    Article  CAS  PubMed  Google Scholar 

  78. Nolasco LH, Turner NA, Bernardo A, et al. Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers. Blood. 2005;106(13):4199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stahl AL, Sartz L, Karpman D. Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Blood. 2011;117(20):5503–13.

    Article  PubMed  CAS  Google Scholar 

  80. Thurman JM, Marians R, Emlen W, et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4(12):1920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Monnens L, Molenaar J, Lambert PH, Proesmans W, van Munster P. The complement system in hemolytic-uremic syndrome in childhood. Clin Nephrol. 1980;13(4):168–71.

    CAS  PubMed  Google Scholar 

  82. Morigi M, Galbusera M, Gastoldi S, et al. Alternative pathway activation of complement by Shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis. J Immunol. 2011;187(1):172–80.

    Article  CAS  PubMed  Google Scholar 

  83. Turner NA, Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis. PLoS One. 2013;8(3):e59372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Noris M, Mescia F, Remuzzi G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat Rev Nephrol. 2012;8(11):622–33.

    Article  CAS  PubMed  Google Scholar 

  85. Dragon-Durey MA, Sethi SK, Bagga A, et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol. 2010;21(12):2180–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Legendre CM, Licht C, Muus P, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.

    Article  CAS  PubMed  Google Scholar 

  88. Zuber J, Fakhouri F, Roumenina LT, Loirat C, Fremeaux-Bacchi V. French Study Group for a HCG. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol. 2012;8(11):643–57.

    Article  CAS  PubMed  Google Scholar 

  89. Colic E, Dieperink H, Titlestad K, Tepel M. Management of an acute outbreak of diarrhoea-associated haemolytic uraemic syndrome with early plasma exchange in adults from southern Denmark: an observational study. Lancet. 2011;378(9796):1089–93.

    Article  PubMed  Google Scholar 

  90. Kim JJ, Goodship TH, Tizard J, Inward C. Plasma therapy for atypical haemolytic uraemic syndrome associated with heterozygous factor H mutations. Pediatr Nephrol. 2011;26(11):2073–6.

    Article  PubMed  Google Scholar 

  91. Kielstein JT, Beutel G, Fleig S, et al. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol Dial Transplant. 2012;27(10):3807–15.

    Article  CAS  PubMed  Google Scholar 

  92. Lapeyraque AL, Malina M, Fremeaux-Bacchi V, et al. Eculizumab in severe Shiga-toxin-associated HUS. N Engl J Med. 2011;364(26):2561–3.

    Article  CAS  PubMed  Google Scholar 

  93. Trachtman H, Austin C, Lewinski M, Stahl RA. Renal and neurological involvement in typical Shiga toxin-associated HUS. Nat Rev Nephrol. 2012;8(11):658–69.

    Article  CAS  PubMed  Google Scholar 

  94. Stephan F, Hollande J, Richard O, Cheffi A, Maier-Redelsperger M, Flahault A. Thrombocytopenia in a surgical ICU. Chest. 1999;115(5):1363–70.

    Article  CAS  PubMed  Google Scholar 

  95. Vanderschueren S, De Weerdt A, Malbrain M, et al. Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2000;28(6):1871–6.

    Article  CAS  PubMed  Google Scholar 

  96. Corrigan Jr JJ. Thrombocytopenia: a laboratory sign of septicemia in infants and children. J Pediatr. 1974;85(2):219–21.

    Article  PubMed  Google Scholar 

  97. Akca S, Haji-Michael P, de Mendonca A, Suter P, Levi M, Vincent JL. Time course of platelet counts in critically ill patients. Crit Care Med. 2002;30(4):753–6.

    Article  PubMed  Google Scholar 

  98. Moreau D, Timsit JF, Vesin A, et al. Platelet count decline: an early prognostic marker in critically ill patients with prolonged ICU stays. Chest. 2007;131(6):1735–41.

    Article  PubMed  Google Scholar 

  99. Baughman RP, Lower EE, Flessa HC, Tollerud DJ. Thrombocytopenia in the intensive care unit. Chest. 1993;104(4):1243–7.

    Article  CAS  PubMed  Google Scholar 

  100. Nguyen TC, Liu A, Liu L, et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92(1):121–4.

    Article  CAS  PubMed  Google Scholar 

  101. Nguyen TCH, Han YY, Mai RA, Dong JF, Jaffe R, Carcillo JA. Microvascular thrombosis is common in children with multiple organ failure: an autopsy study. Crit Care Med. 2007;35(12):A200.

    Google Scholar 

  102. Bockmeyer CL, Claus RA, Budde U, et al. Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica. 2008;93(1):137–40.

    Article  CAS  PubMed  Google Scholar 

  103. Martin K, Borgel D, Lerolle N, et al. Decreased ADAMTS-13 (A disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure*. Crit Care Med. 2007;35(10):2375–82.

    Article  CAS  PubMed  Google Scholar 

  104. Ono T, Mimuro J, Madoiwa S, et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34.

    Article  CAS  PubMed  Google Scholar 

  105. Ohshiro M, Kuroda J, Kobayashi Y, et al. ADAMTS-13 activity can predict the outcome of disseminated intravascular coagulation in hematologic malignancies treated with recombinant human soluble thrombomodulin. Am J Hematol. 2012;87(1):116–9.

    Article  CAS  PubMed  Google Scholar 

  106. Studt JD, Hovinga JA, Antoine G, et al. Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS13 inhibitor: in vitro inhibition of ADAMTS13 activity by hemoglobin. Blood. 2005;105(2):542–4.

    Article  CAS  PubMed  Google Scholar 

  107. Zhou Z, Han H, Cruz MA, Lopez JA, Dong JF, Guchhait P. Haemoglobin blocks von Willebrand factor proteolysis by ADAMTS-13: a mechanism associated with sickle cell disease. Thromb Haemost. 2009;101(6):1070–7.

    CAS  PubMed  Google Scholar 

  108. Ware LB, Eisner MD, Thompson BT, Parsons PE, Matthay MA. Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med. 2004;170(7):766–72.

    Article  PubMed  Google Scholar 

  109. Flori HR, Ware LB, Milet M, Matthay MA. Early elevation of plasma von Willebrand factor antigen in pediatric acute lung injury is associated with an increased risk of death and prolonged mechanical ventilation. Pediatr Crit Care Med. 2007;8(2):96–101.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nguyen TC, Balll C, Cruz MA, Liang X, Zhou Z, Dong J. A negative feedback mechanism of regulating VWF proteolysis by ADAMTS-13. J Thromb Haemost. 2011;9 Suppl 2:206.

    Google Scholar 

  111. Mannucci PM, Capoferri C, Canciani MT. Plasma levels of von Willebrand factor regulate ADAMTS-13, its major cleaving protease. Br J Haematol. 2004;126(2):213–8.

    Article  CAS  PubMed  Google Scholar 

  112. Chen J, Fu X, Wang Y, et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood. 2010;115(3):706–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Iba T, Kidokoro A, Fukunaga M, Sugiyama K, Sawada T, Kato H. Association between the severity of sepsis and the changes in hemostatic molecular markers and vascular endothelial damage markers. Shock. 2005;23(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  114. Crawley JT, Lam JK, Rance JB, Mollica LR, O’Donnell JS, Lane DA. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105(3):1085–93.

    Article  CAS  PubMed  Google Scholar 

  115. Shelat SG, Smith P, Ai J, Zheng XL. Inhibitory autoantibodies against ADAMTS-13 in patients with thrombotic thrombocytopenic purpura bind ADAMTS-13 protease and may accelerate its clearance in vivo. J Thromb Haemost. 2006;4(8):1707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rieger M, Mannucci PM, Kremer Hovinga JA, et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood. 2005;106(4):1262–7.

    Article  CAS  PubMed  Google Scholar 

  117. Kox WJ, Volk T, Kox SN, Volk HD. Immunomodulatory therapies in sepsis. Intensive Care Med. 2000;26 Suppl 1:S124–8.

    Article  PubMed  Google Scholar 

  118. Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32.

    Article  CAS  PubMed  Google Scholar 

  119. Genton C, Wang Y, Izui S, et al. The Th2 lymphoproliferation developing in LatY136F mutant mice triggers polyclonal B cell activation and systemic autoimmunity. J Immunol. 2006;177(4):2285–93.

    Article  CAS  PubMed  Google Scholar 

  120. Feys HB, Roodt J, Vandeputte N, et al. Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood. 2010;116(12):2005–10.

    Article  CAS  PubMed  Google Scholar 

  121. Bockmeyer CL, Reuken PA, Simon TP, et al. ADAMTS13 activity is decreased in a septic porcine model. Significance for glomerular thrombus deposition. Thromb Haemost. 2011;105(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  122. Aoki N, Matsuda T, Saito H, et al. A comparative double-blind randomized trial of activated protein C and unfractionated heparin in the treatment of disseminated intravascular coagulation. Int J Hematol. 2002;75(5):540–7.

    Article  CAS  PubMed  Google Scholar 

  123. Jaimes F, De La Rosa G, Morales C, et al. Unfractioned heparin for treatment of sepsis: a randomized clinical trial (the HETRASE study). Crit Care Med. 2009;37(4):1185–96.

    Article  CAS  PubMed  Google Scholar 

  124. Sakuragawa N, Hasegawa H, Maki M, Nakagawa M, Nakashima M. Clinical evaluation of low-molecular-weight heparin (FR-860) on disseminated intravascular coagulation (DIC)–a multicenter co-operative double-blind trial in comparison with heparin. Thromb Res. 1993;72(6):475–500.

    Article  CAS  PubMed  Google Scholar 

  125. Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA J Am Med Assoc. 2001;286(15):1869–78.

    Article  CAS  Google Scholar 

  126. Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA J Am Med Assoc. 2003;290(2):238–47.

    Article  CAS  Google Scholar 

  127. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709.

    Article  CAS  PubMed  Google Scholar 

  128. Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–64.

    Article  CAS  PubMed  Google Scholar 

  129. de Kleijn ED, de Groot R, Hack CE, et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med. 2003;31(6):1839–47.

    Article  PubMed  Google Scholar 

  130. Rintala E, Kauppila M, Seppala OP, et al. Protein C substitution in sepsis-associated purpura fulminans. Crit Care Med. 2000;28(7):2373–8.

    Article  CAS  PubMed  Google Scholar 

  131. Saito H, Maruyama I, Shimazaki S, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  132. Nurnberger J, Philipp T, Witzke O, et al. Eculizumab for atypical hemolytic-uremic syndrome. N Engl J Med. 2009;360(5):542–4.

    Article  PubMed  Google Scholar 

  133. Plaimauer B, Kremer Hovinga JA, Juno C, et al. Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost. 2011;9(5):936–44.

    Article  CAS  PubMed  Google Scholar 

  134. Jin SY, Xiao J, Bao J, Zhou S, Wright JF, Zheng XL. AAV-mediated expression of an ADAMTS13 variant prevents shigatoxin-induced thrombotic thrombocytopenic purpura. Blood. 2013;121(19):3825–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cataland SR, Peyvandi F, Mannucci PM, et al. Initial experience from a double-blind, placebo-controlled, clinical outcome study of ARC1779 in patients with thrombotic thrombocytopenic purpura. Am J Hematol. 2012;87(4):430–2.

    Article  CAS  PubMed  Google Scholar 

  136. Callewaert F, Roodt J, Ulrichts H, et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood. 2012;120(17):3603–10.

    Article  CAS  PubMed  Google Scholar 

  137. Firbas C, Siller-Matula JM, Jilma B. Targeting von Willebrand factor and platelet glycoprotein Ib receptor. Expert Rev Cardiovasc Ther. 2010;8(12):1689–701.

    Article  CAS  PubMed  Google Scholar 

  138. Perez-Vilar J, Hill RL. The structure and assembly of secreted mucins. J Biol Chem. 1999;274(45):31751–4.

    Article  CAS  PubMed  Google Scholar 

  139. Chen J, Reheman A, Gushiken FC, et al. N-acetylcysteine reduces the size and activity of von Willebrand factor in human plasma and mice. J Clin Investig. 2011;121(2):593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nguyen TC, Gushiken F, Dong JF, Cruz MA. Recombinant Von Willebrand Factor A2 Domain Polypeptide Inhibits Platelet Adhesion to Fibrinogen and Decreases Mortality in a Murine Endotoxemia-induced Disseminated Intravascular Coagulation Model. Crit Care Med. 2012;40(12):A179.

    Article  Google Scholar 

  141. Chapin J, Weksler B, Magro C, Laurence J. Eculizumab in the treatment of refractory idiopathic thrombotic thrombocytopenic purpura. Br J Haematol. 2012;157(6):772–4.

    Article  CAS  PubMed  Google Scholar 

  142. Tsai E, Chapin J, Laurence JC, Tsai HM. Use of eculizumab in the treatment of a case of refractory, ADAMTS13-deficient thrombotic thrombocytopenic purpura: additional data and clinical follow-up. Br J haematol. 2013;162:558–9.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Reti M, Farkas P, Csuka D, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(5):791–8.

    Article  CAS  PubMed  Google Scholar 

  144. Fortenberry JD, Knezevic A, Nguyen TC. Group TNS. Outcome in childrens on ECMO with TAMOF receiving plasma exchange: results from the prospective pediatric TAMOF network study. Crit Care Med. 2012;40(12):A520.

    Google Scholar 

  145. Fortenberry JD, Nguyen TC, Toney R, Knezevic A, Rogers K. Group CsTNS. Organ dysfunction and experience with Plasma Exchange (PEx) in children with Thrombocytopenia-Associated Multiple Organ Failure (TAMOF); findings of the prospective children’s TAMOF network. Pediatr Crit Care Med. 2011;12(3):A83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung C. Nguyen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Nguyen, T.C., Han, Y.Y., Fortenberry, J.D., Zhou, Z., Cruz, M.A., Carcillo, J.A. (2014). Thrombocytopenia-Associated Multiple Organ Failure Syndrome. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6416-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6416-6_31

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6415-9

  • Online ISBN: 978-1-4471-6416-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics