Skip to main content

Liver Failure in Infants and Children

  • Chapter
  • First Online:
Pediatric Critical Care Medicine
  • 2339 Accesses

Abstract

Liver dysfunction is common in children requiring intensive care and is a common source of morbidity and mortality. Both primary disorders of the liver and complications of other underlying disorders may result in hepatic failure and life-threatening multisystem dysfunction. Slowly progressive liver disease may result from numerous disorders of infancy and childhood. The rate of progression and specific complications vary with the specific disorder, but most ultimately progress to cirrhosis and obstruction to portal venous blood flow, with variceal bleeding, intractable ascites, failed synthetic function, growth failure, severe coagulopathy, encephalopathy, and multiple organ dysfunction. Biliary atresia is the most common, but intrahepatic cholestasis, a variety of familial disorders, chronic viral infection, and parenteral nutrition induced cirrhosis are also relatively frequent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhaduri BR, Mieli-Vergani G. Fulminant hepatic failure: pediatric aspects. Semin Liver Dis. 1996;16:349–55.

    Article  CAS  PubMed  Google Scholar 

  2. Davern TJ, James LP, Hinson JA, et al.; Acute Liver Failure Study Group. Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology. 2006;130:687–94.

    Google Scholar 

  3. James LP, Alonso EM, Hynan LS, et al.; Pediatric Acute Liver Failure Study Group. Detection of acetaminophen protein adducts in children with acute liver failure of indeterminate cause. Pediatrics. 2006;118:e676–81.

    Google Scholar 

  4. Devlin J, Ellis AE, McPeake J, et al. N-acetylcysteine improves indocyanine green extraction and oxygen transport during hepatic dysfunction. Crit Care Med. 1997;25:236–42.

    Article  CAS  PubMed  Google Scholar 

  5. Harrison P, Wendon J, Williams R. Evidence of increased guanylate cyclase activation by acetylcysteine in fulminant hepatic failure. Hepatology. 1996;23:1067–72.

    Article  CAS  PubMed  Google Scholar 

  6. Squires RH, Dhawan A, Alonso E, et al. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial. Hepatology. 2013;57:1542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boeckx NK, Haydon G, Rusli F, et al. Multiorgan failure is the commonest cause of death in fulminant hepatic failure: a single centre experience. Liver Int. 2004;24:702–3.

    Article  PubMed  Google Scholar 

  8. Heneghan MA, Lara L. Fulminant hepatic failure. Semin Gastrointest Dis. 2003;14:87–100.

    PubMed  Google Scholar 

  9. Blei AT, Larsen FS. Pathophysiology of cerebral edema in fulminant hepatic failure. J Hepatol. 1999;31:771–6.

    Article  CAS  PubMed  Google Scholar 

  10. Hazell AS, Butterworth RF. Hepatic encephalopathy: an update of pathophysiologic mechanisms. Proc Soc Exp Biol Med. 1999;222:99–112.

    Article  CAS  PubMed  Google Scholar 

  11. Alper G, Jarjour IT, Reyes JD, et al. Outcome of children with cerebral edema caused by fulminant hepatic failure. Pediatr Neurol. 1998;18:299–304.

    Article  CAS  PubMed  Google Scholar 

  12. Weissenborn K, Bokemeyer M, Ahl B, et al. Functional imaging of the brain in patients with liver cirrhosis. Metab Brain Dis. 2004;19:269–80.

    Article  PubMed  Google Scholar 

  13. Bluml S, Moreno A, Hwang J, et al. NMR Biomed. 2001;14:19–32.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi H, Koehler RC, Brusilow SW, et al. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemia in rats. Am J Physiol. 1991;281:H826–9.

    Google Scholar 

  15. Blei AT, Olafsson S, Therrien G, et al. Ammonia-induced brain edema and intracranial hypertension in the rats after portacaval anastomosis. Hepatology. 1994;19:1437–44.

    Article  CAS  PubMed  Google Scholar 

  16. Aggarwal S, Kramer D, Yonas H, et al. Cerebral hemodynamic and metabolic changes in fulminant hepatic failure: a retrospective study. Hepatology. 1994;19:80–7.

    Article  CAS  PubMed  Google Scholar 

  17. Larsen FS, Ejlersen E, Hansen BA, et al. Functional loss of cerebral blood flow autoregulation in patients with fulminant hepatic failure. J Hepatol. 1995;23:212–7.

    Article  CAS  PubMed  Google Scholar 

  18. Strauss GI, Hogh P, Moller K, et al. Regional cerebral blood flow during mechanical hyperventilation in patients with fulminant hepatic failure. Hepatology. 1999;30:1368–73.

    Article  CAS  PubMed  Google Scholar 

  19. Vaquero J, Chung C, Cahill ME, et al. Pathogenesis of hepatic encephalopathy in acute liver failure. Semin Liver Dis. 2003;23:259–69.

    Article  CAS  PubMed  Google Scholar 

  20. Strauss GI, Hansen BA, Herzog T, et al. Cerebral autoregulation in patients with end stage liver disease. Eur J Gastroenterol Hepatol. 2000;12:767–71.

    Article  CAS  PubMed  Google Scholar 

  21. Tofteng F, Larsen FS. The effect of indomethacin on intracranial pressure, cerebral perfusion and extracellular lactate and glutamate concentrations in patients with fulminant hepatic failure. J Cereb Blood Flow Metab. 2004;24:798–804.

    Article  CAS  PubMed  Google Scholar 

  22. Strauss GI, Moller K, Larsen FS, et al. Cerebral glucose and oxygen metabolism in patients with fulminant hepatic failure. Liver Transpl. 2003;9:1244–52.

    Article  PubMed  Google Scholar 

  23. Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. 2002;67:259–79.

    Article  CAS  PubMed  Google Scholar 

  24. Knecht K, Michalak A, Rose C, et al. Decreased glutamate transporters (GLT-1) expression in frontal cortex of rats with acute liver failure. Neurosci Lett. 1997;229:201–3.

    Article  CAS  PubMed  Google Scholar 

  25. Szerb JC, Butterworth RF. Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog Neurobiol. 1992;39:135–53.

    Article  CAS  PubMed  Google Scholar 

  26. Basile AS, Jones EA, Skolnick P. The pathogenesis and treatment of hepatic encephalopathy: evidence for the involvement of benzodiazepine receptor ligands. Pharmacol Rev. 1991;43:27–71.

    CAS  PubMed  Google Scholar 

  27. Basile AS. Direct and indirect enhancement of GABAergic neurotransmission by ammonia: implications for the pathogenesis of hyperammonemic syndromes. Neurochem Int. 2002;41:115–22.

    Article  CAS  PubMed  Google Scholar 

  28. Norenberg MD. Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis. 1998;13:319–35.

    Article  CAS  PubMed  Google Scholar 

  29. Ahboucha S, Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at GABA from the molecular standpoint. Metab Brain Dis. 2004;19:331–43.

    Article  CAS  PubMed  Google Scholar 

  30. Paul SM, Purdy RH. Neuroactive steroids. FASEB J. 1992;6:2311–22.

    CAS  PubMed  Google Scholar 

  31. Norenberg MD, Itzhak Y, Bender AS. The peripheral benzodiazepine receptor and neurosteroids in hepatic encephalopathy. In: Felipo V, Grisol’a S, editors. Advances in cirrhosis, hyperammonemia, and hepatic encephalopathy. New York: Plenum Press; 1997. p. 95–111.

    Chapter  Google Scholar 

  32. Butterworth RF, Spahr L, Fontaine S, et al. Manganese toxicity, dopaminergic dysfunction, and hepatic encephalopathy. Metab Brain Dis. 1995;10:259–67.

    Article  CAS  PubMed  Google Scholar 

  33. Spahr L, Butterworth RF, Fontaine S, et al. Increased blood manganese in cirrhotic patients: relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology. 1996;24:1116–20.

    Article  CAS  PubMed  Google Scholar 

  34. Devenyi AG, Barron TF, Mamourian AC. Dystonia, hyperintense basal ganglia, and high whole blood manganese levels in Alagille’s syndrome. Gastroenterology. 1994;106:1068–71.

    Article  CAS  PubMed  Google Scholar 

  35. Barron TF, Devenyi AG, Mamourian AC. Symptomatic manganese neurotoxicity in a patient with chronic liver disease: correlation of clinical symptoms with MRI findings. Pediatr Neurol. 1994;10:145–8.

    Article  CAS  PubMed  Google Scholar 

  36. Als-Nielsen B, Gluud LL, Gluud C. Nonabsorbable disaccharides for hepatic encephalopathy. Cochrane Database Syst Rev. 2004;2:CD003044.

    Google Scholar 

  37. Murphy N, Auzinger G, Bernel W, et al. The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology. 2004;39:464–70.

    Article  CAS  PubMed  Google Scholar 

  38. Kodakar SK, Gopal PB, Wendon JA. Hyperglycemia is associated with intracranial hypertension in patients with acute liver failure. Liver Transpl. 2001;7:C211, abstract.

    Google Scholar 

  39. Blei AT, Olafsson S, Webster S, et al. Complications of intracranial pressure monitoring in fulminant hepatic failure. Lancet. 1993;341:157–8.

    Article  CAS  PubMed  Google Scholar 

  40. Higgins PD, Fontana RJ. Liver transplantation in acute liver failure. Panminerva Med. 2003;45:85–94.

    CAS  PubMed  Google Scholar 

  41. Jalan R, Olde Damink SW, Deutz NE, et al. Restoration of cerebral blood flow autoregulation and reactivity to carbon dioxide in acute liver failure by moderate hypothermia. Hepatology. 2001;34:50–4.

    Article  CAS  PubMed  Google Scholar 

  42. Jalan R, Damink SW, Deutz NE, et al. Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet. 1999;354:1164–8.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts DR, Manas D. Induced hypothermia in the management of cerebral oedema secondary to fulminant liver failure. Clin Transplant. 1999;13:545–7.

    Article  CAS  PubMed  Google Scholar 

  44. Jalan R, Olde Damink SW. Hypothermia for the management of intracranial hypertension in acute liver failure. Curr Opin Crit Care. 2001;7:257–62.

    Article  CAS  PubMed  Google Scholar 

  45. Belanger M, Desjardins P, Chatauret N, et al. Mild hypothermia prevents brain edema and attenuates up-regulation of the astrocytic benzodiazepine receptor in experimental acute liver failure. J Hepatol. 2005;42:694–9.

    Article  CAS  PubMed  Google Scholar 

  46. Ellis A, Wendon J. Circulatory, respiratory, cerebral and renal derangements in acute liver failure: pathophysiology and management. Semin Liver Dis. 1996;16:379–88.

    Article  CAS  PubMed  Google Scholar 

  47. Gines P, Gurevar M, Arroyo V, et al. Hepatorenal syndrome. Lancet. 2003;362:1819–27.

    Article  CAS  PubMed  Google Scholar 

  48. Moreau R. Hepatorenal syndrome in patients with ascites. J Gastroenterol Hepatol. 2002;17:739–47.

    Article  CAS  PubMed  Google Scholar 

  49. Dagher L, Moore K. The hepatorenal syndrome. Gut. 2001;49:729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moore K, Wendon J, Frazer M, et al. Plasma endothelin immunoreactivity in liver disease and the hepatorenal syndrome. N Engl J Med. 1992;327:1774–8.

    Article  CAS  PubMed  Google Scholar 

  51. Moore K. Endothelin and vascular function in liver disease. Gut. 2004;53:159–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arroyo V, Gines P, Gerbes AL, et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. Hepatology. 1996;23:164–76.

    Article  CAS  PubMed  Google Scholar 

  53. Arroyo V, Bataller R, Guevara M. Treatment of hepatorenal syndrome in cirrhosis. In: Arroyo V, Gines P, Rodes J, Schrier RW, editors. Ascites and renal dysfunction in liver disease. Pathogenesis, diagnosis, and treatment. Malden: Blackwell Science; 1999. p. 492–510.

    Google Scholar 

  54. Uriz J, Gines P, Cardenas A, et al. Terlipressin plus albumin infusion: an effective and safe therapy of hepatorenal syndrome. J Hepatol. 2000;33:43–8.

    Article  CAS  PubMed  Google Scholar 

  55. Moreau R, Durand F, Poynard T, et al. Terlipressin in patients with cirrhosis and type 1 hepatorenal syndrome: a retrospective multicenter study. Gastroenterology. 2002;122:923–30.

    Article  CAS  PubMed  Google Scholar 

  56. Solanki P, Chawla A, Garg R, et al. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebo-controlled clinical trail. J Gastroenterol Hepatol. 2003;18:152–6.

    Article  CAS  PubMed  Google Scholar 

  57. Jiménez W, Serradeil-Le Gal C, Ros J, et al. Long-term aquaretic efficacy of a selective nonpeptide V2-vasopressin receptor antagonist, SR121463, in cirrhotic rats. J Pharmacol Exp Ther. 2000;295:83–90.

    PubMed  Google Scholar 

  58. Ferguson JW, Therapondos G, Newby DE, et al. Therapeutic role of vasopressin receptor antagonism in patients with liver cirrhosis. Clin Sci. 2003;105:1–8.

    Article  CAS  PubMed  Google Scholar 

  59. Boyer TD. Aquaretics in cirrhotics with hyponatremia. J Gastroenterol Hepatol. 2004;19:S191–3.

    Article  Google Scholar 

  60. Gerbes A, Gulberg V, Gines P, et al. Therapy of hyponatremia in cirrhosis with vasopressin receptor antagonist: a randomized double-blind multicenter trail. Gastroenterology. 2003;124:933–9.

    Article  CAS  PubMed  Google Scholar 

  61. Wong F, Blei A, Blendis LM, Thuluvath PJ, North American VPA-985 Study Group. A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. Hepatology. 2003;37:182–91.

    Article  CAS  PubMed  Google Scholar 

  62. Bosch-Marce M, Jimenez W, Angeli P, et al. Aquaretic effect of the K-opioid agonist RU 51599 in cirrhotic rats with ascites and water retention. Gastroenterology. 1995;109:17–23.

    Article  Google Scholar 

  63. Pereira SP, Langley PG, Williams R. The management of abnormalities of hemostasis in acute liver failure. Semin Liver Dis. 1996;16:403–14.

    Article  CAS  PubMed  Google Scholar 

  64. Giannini E, Botta F, Borro P, et al. Relationship between thrombopoietin serum levels and liver function in patients with chronic liver disease related to hepatitis C virus infection. Am J Gastroenterol. 2003;98:2516–20.

    Article  CAS  PubMed  Google Scholar 

  65. Sanjo A, Satoi J, Ohnishi A, et al. Role of elevated platelet-associated immunoglobulin G and hypersplenism in thrombocytopenia of chronic liver diseases. J Gastroenterol Hepatol. 2003;18:638–44.

    Article  PubMed  Google Scholar 

  66. Schiodt FV, Balko J, Schilsky M, et al.; Acute Liver Failure Study Group. Thrombopoietin in acute liver failure. Hepatology. 2003;37:558–61.

    Google Scholar 

  67. Peck-Radosavljevic M, Wichlas M, Zacherl J, et al. Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production. Blood. 2000;95:795–801.

    CAS  PubMed  Google Scholar 

  68. Wolber EM, Ganschow R, Burdelski M, et al. Hepatic thrombopoietin mRNA levels in acute and chronic liver failure of childhood. Hepatology. 1999;29:1739–42.

    Article  CAS  PubMed  Google Scholar 

  69. Tobias JD, Berkenbosch JW. Synthetic factor VIIa concentrate to treat coagulopathy and gastrointestinal bleeding in an infant with end-stage liver disease. Clin Pediatr. 2002;41:613–6.

    Article  Google Scholar 

  70. Heikenen JP, Pohl JF, Werlin SL, et al. Octreotide in pediatric patients. J Pediatr Gastroenterol Nutr. 2002;35:600–9.

    Article  CAS  PubMed  Google Scholar 

  71. D’Amico G, Pietrosi G, Tarantino I, Pagliaro L. Emergency sclerotherapy versus vasoactive drugs for variceal bleeding in cirrhosis: a Cochrane meta-analysis. Gastroenterology. 2003;124:1277–91.

    Article  PubMed  CAS  Google Scholar 

  72. Funk GC, Doberer D, Osterreicher C, et al. Equilibrium of acidifying and alkalinizing metabolic acid-base disorders in cirrhosis. Liver Int. 2005;25:505–12.

    Article  CAS  PubMed  Google Scholar 

  73. Lustik SJ, Chhibber AK, Kolano JW, et al. The hyperventilation of cirrhosis: progesterone and estradiol effects. Hepatology. 1997;2:55–8.

    Article  Google Scholar 

  74. TenHoor T, Mannino DM, Moss M. Risk factors for ARDS in the United States: analysis of the 1993 National Mortality Followback Study. Chest. 2001;19:1179–84.

    Article  Google Scholar 

  75. Matuschak GM. Lung-liver interactions in sepsis and multiple organ failure syndrome. Clin Chest Med. 1996;17:83–98.

    Article  CAS  PubMed  Google Scholar 

  76. Altomare E, Vendemiale G, Albano O. Hepatic glutathione content in patients with alcoholic and non alcoholic liver diseases. Life Sci. 1988;43:991–8.

    Article  CAS  PubMed  Google Scholar 

  77. Foreman MG, Hoor TT, Brown LA, et al. Effects of chronic hepatic dysfunction on pulmonary glutathione homeostasis. Alcohol Clin Exp Res. 2002;26:1840–5.

    Article  CAS  PubMed  Google Scholar 

  78. Rodríguez-Roisin R, Krowka MJ, Hervé P, et al. Highlights of the ERS Task Force on pulmonary-hepatic vascular disorders (PHD). J Hepatol. 2005;42:924–7.

    Article  Google Scholar 

  79. Gaines DI, Fallon MB. Hepatopulmonary syndrome. Liver Int. 2004;24:397–401.

    Article  PubMed  Google Scholar 

  80. Barbe T, Losay J, Grimon G, et al. Pulmonary arteriovenous shunting in children with liver disease. J Pediatr. 1995;26:571–9.

    Article  Google Scholar 

  81. Santamaria F, Sarnelli P, Celentano L, et al. Noninvasive investigation of hepatopulmonary syndrome in children and adolescents with chronic cholestasis. Pediatr Pulmonol. 2002;33:374–9.

    Article  PubMed  Google Scholar 

  82. Egawa H, Kasahara M, Inomata Y, et al. Long-term outcome of living related liver transplantation for patients with intrapulmonary shunting and strategy for complications. Transplantation. 1999;67:712–7.

    Article  CAS  PubMed  Google Scholar 

  83. Van Obbergh L, Carlier M, de Clety SC, et al. Liver transplantation and pulmonary gas exchanges in hypoxemic children. Am Rev Respir Dis. 1993;148:1408–10.

    Article  PubMed  Google Scholar 

  84. Moller S, Henriksen JH. Cirrhotic cardiomyopathy: a pathophysiological review of circulatory dysfunction in liver disease. Heart. 2002;87:9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jimenez W, Arroyo V. Origins of cardiac dysfunction in cirrhosis. Gut. 2003;52:1392–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martin P-Y, Gines P, Schrier RW. Mechanisms of disease: nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N Engl J Med. 1998;339:533–41.

    Article  CAS  PubMed  Google Scholar 

  87. Moreau R. Are nitric oxide synthases new players in the pathophysiology of fulminant hepatic failure? J Hepatol. 2002;37:678–80.

    Article  CAS  PubMed  Google Scholar 

  88. Tabernero A, Schneider F, Potenza M, et al. Cyclooxygenase-2 and inducible nitric oxide synthase in omental arteries harvested from patients with severe liver diseases: immuno-localization and influence on vascular tone. Intensive Care Med. 2003;29:262–70.

    Article  PubMed  Google Scholar 

  89. Pozzi M, Carugo S, Boari G, et al. Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology. 1997;26:1131–7.

    CAS  PubMed  Google Scholar 

  90. Mohamed R, Forsey PR, Davies MK, et al. Effect of liver transplantation on QT interval prolongation and autonomic dysfunction in end-stage liver disease. Hepatology. 1996;23:1128–34.

    Article  CAS  PubMed  Google Scholar 

  91. Ytting H, Henriksen JH, Fuglsang S, et al. Prolonged Q-T(c) interval in mild portal hypertensive cirrhosis. J Hepatol. 2005;43:637–44.

    Article  PubMed  Google Scholar 

  92. Schrier RW, Caramelo C. Hemodynamic and hormonal alterations in hepatic cirrhosis. In: Epstein M, editor. The kidney in liver disease. Baltimore: Williams & Wilkins Co; 1988. p. 265–85.

    Google Scholar 

  93. MacGilchrist AJ, Sumner D, Reid JL. Impaired pressor reactivity in cirrhosis: evidence for a peripheral vascular defect. Hepatology. 1991;13:689–94.

    Article  CAS  PubMed  Google Scholar 

  94. Smith RE, Robinson NM, McPeake JR, et al. Induction and role of NO synthase in hypotensive hepatic failure. Arterioscler Thromb Vasc Biol. 1997;17:3079–82.

    Article  CAS  PubMed  Google Scholar 

  95. Trevisani F, Sica G, Mainqua P, et al. Autonomic dysfunction and hyperdynamic circulation in cirrhosis with ascites. Hepatology. 1999;30:1387–92.

    Article  CAS  PubMed  Google Scholar 

  96. Wong F, Siu S, Liu P, et al. Brain natriuretic peptide: is it a predictor of cardiomyopathy in cirrhosis. Clin Sci. 2001;101:621–8.

    Article  CAS  PubMed  Google Scholar 

  97. Henriksen JH, Gøtze JP, Fuglsang S, et al. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease. Gut. 2003;52:1511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gerbes AL, Remien J, Jungst d, et al. Evidence for down-regulation of beta-2-adrenoceptors in cirrhotic patients with severe ascites. Lancet. 1986;1:1409–11.

    Article  CAS  PubMed  Google Scholar 

  99. Ma Z, Miyamoto A, Lee SS. Role of altered beta-adrenoceptor signal transduction in the pathogenesis of cirrhotic cardiomyopathy in rats. Gastroenterology. 1996;110:1191–8.

    Article  CAS  PubMed  Google Scholar 

  100. Pateron D, Beyne P, Laperche T, et al. Elevated circulating cardiac troponin I in patients with cirrhosis. Hepatology. 1999;29:640–3.

    Article  CAS  PubMed  Google Scholar 

  101. Bernard O. Pulmonary arteriovenous shunting and pulmonary artery hypertension in children with liver disease. Pediatr Pulmonol. 1999;18:88–90.

    Article  CAS  Google Scholar 

  102. Losay J, Piot D, Bougaran J, et al. Early liver transplantation is crucial in children with liver disease and pulmonary artery hypertension. J Hepatol. 1998;28:337–42.

    Article  CAS  PubMed  Google Scholar 

  103. Larsen FS, Hansen BA, Jorgensen LG, et al. Cerebral blood flow velocity during high volume plasmapheresis in fulminant hepatic failure. Int J Artif Organs. 1994;17:353–61.

    CAS  PubMed  Google Scholar 

  104. Larsen FS, Hansen BA, Ejlersen E, et al. Cerebral blood flow, oxygen metabolism and transcranial Doppler sonography during high-volume plasmapheresis in fulminant hepatic failure. Eur J Gastroenterol Hepatol. 1996;8:261–5.

    Article  CAS  PubMed  Google Scholar 

  105. Singer AL, Olthoff KM, Kim H, et al. Role of plasmapheresis in the management of acute hepatic failure in children. Ann Surg. 2001;234:418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Reyes J, Jain A, Mazariegos G, et al. Long-term results after conversion from cyclosporine to tacrolimus in pediatric liver transplantation for acute and chronic rejection. Transplantation. 2000;69:2573–80.

    Article  CAS  PubMed  Google Scholar 

  107. Goss JA, Shackleton CR, McDiarmid SV, et al. Long-term results of pediatric liver transplantation: an analysis of 569 transplants. Ann Surg. 1998;228:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cox KL, Berquist WE, Castillo RO. Paediatric liver transplantation: indications, timing and medical complications. J Gastroenterol Hepatol. 1999;14:S61–6.

    Article  PubMed  Google Scholar 

  109. Bucuvalas JC, Rychman FC. Long-term outcome after liver transplantation in children. Pediatr Transplant. 2002;6:30–6.

    Article  PubMed  Google Scholar 

  110. Goss JA, Shackleton CR, Maggard M, et al. Liver transplantation for fulminant hepatic failure in the pediatric patient. Arch Surg. 1998;133:839–44.

    Article  CAS  PubMed  Google Scholar 

  111. Heemann U, Treichel U, Loock J, et al. Albumin dialysis in cirrhosis with superimposed acute liver injury: a prospective, controlled study. Hepatology. 2002;3:949–58.

    Article  CAS  Google Scholar 

  112. Ellis AJ, Hughes RD, Nicholl D, et al. Temporary extracorporeal liver support for severe acute alcoholic hepatitis using the BioLogic-DT. Int J Artif Organs. 1999;22:27–34.

    PubMed  Google Scholar 

  113. Kramer L, Gendo A, Madl C, et al. A controlled study of sorbent suspension dialysis in chronic liver disease and hepatic encephalopathy. Int J Artif Organs. 2001;24:434–42.

    CAS  PubMed  Google Scholar 

  114. Wilkinson AH, Ash SR, Nissenson AR. Hemodiabsorption in treatment of hepatic failure. J Transpl Coord. 1998;8:43–50.

    Article  CAS  PubMed  Google Scholar 

  115. Demetriou AA, Brown Jr RS, Busuttil RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;23:660–7.

    Article  Google Scholar 

  116. Liu JP, Gluud LL, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for liver failure. Cochrane Database Syst Rev. 2004;1:CD003628.

    Google Scholar 

  117. Treem WR. Fulminant hepatic failure in children. J Pediatr Gastroenterol Nutr. 2002;35:S33–8.

    Article  PubMed  Google Scholar 

  118. Tissieres P, Sasbon JS, Devictor D. Liver support for fulminant hepatic failure: is it time to use the molecular adsorbents recycling system in children? Pediatr Crit Care Med. 2005;6:585–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann E. Thompson MD, MHCPM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Thompson, A.E. (2014). Liver Failure in Infants and Children. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6416-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6416-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6415-9

  • Online ISBN: 978-1-4471-6416-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics