Skip to main content

Renal Replacement Therapy

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Acute Kidney Injury (AKI) is a common occurrence in the pediatric intensive care unit, with a shift in the last two decades to the majority of etiologies being an outcome of other primary illnesses and the treatments given for these diseases rather than primary intrinsic renal disease. It should be treated with renal supportive measures which include close monitoring, avoiding secondary injury, supportive measures to remove excess total body fluid and/or toxic wastes, and may require dialysis with expectation of renal recovery with adequate support. Renal supportive therapies (RST) should be initiated at the earliest signs of AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcan-Arikan A, et al. AKI in critically ill children. Kidney Int. 2007;71:1028–35.

    Article  CAS  PubMed  Google Scholar 

  2. Zappitelli M, Moffett BS, Hyder A, Goldstein S. Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare centre: a retrospective cohort study. Nephrol Dial Transplant. 2011;26:144–50.

    Article  PubMed  Google Scholar 

  3. Andreoli SP. Management of acute kidney injury in children: a guide for pediatricians. Pediatr Drugs. 2008;10(6):379–90.

    Article  Google Scholar 

  4. Cuzzolin L, Fanos V, Pinna B, et al. Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr Nephrol. 2006;21:931–4.

    Article  PubMed  Google Scholar 

  5. Zappitelli M, Bernier PL, Saczkowski RS, et al. A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int. 2009;76(8):885–92.

    Article  CAS  PubMed  Google Scholar 

  6. Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr. 2011;23(2):194–200. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haase M, Devarajan P, Haase-Fielitz A, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57(17):1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Askenazi D. Evaluation and management of critically ill children with acute kidney injury. Curr Opin Pediatr. 2011;23:201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shilliday IR, Quinn KJ, Allison ME. Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol Dial Transplant. 1997;12:2592–6.

    Article  CAS  PubMed  Google Scholar 

  10. Lameire N, Vanholder R, Van Biesen W. Loop diuretics for patients with acute renal failure: helpful or harmful? JAMA. 2002;288:2599–601.

    Article  PubMed  Google Scholar 

  11. Cerda J, Sheinfeld G, Ronco C. Fluid overload in critically ill patients with acute kidney injury. Blood Purif. 2010;29(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55:316–25.

    Article  PubMed  Google Scholar 

  13. Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24:394–400.

    Article  PubMed  Google Scholar 

  14. Foland JA, Fortenberry JD, Warshaw BL. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771–6.

    Article  PubMed  Google Scholar 

  15. Goldstein SL. Advances in pediatric renal replacement therapy for acute kidney injury. Semin Dial. 2011;24(2):187–91.

    Article  PubMed  Google Scholar 

  16. DiCarlo JV, Alexander SR, Agarwal R, Schiffman JD. Continuous veno-venous hemofiltration may improve survival from acute respiratory distress syndrome after bone marrow transplantation or chemotherapy. J Pediatr Hematol Oncol. 2003;25(10):801–5.

    Article  PubMed  Google Scholar 

  17. Flores FX, Brophy PD, Symons JM, et al. Continuous Renal Replacement Therapy (CRRT) after stem cell transplantation. A report from the prospective pediatric CRRT Registry Group. Pediatr Nephrol. 2008;23:625–30.

    Article  PubMed  Google Scholar 

  18. Ansari N. Peritoneal dialysis in renal replacement therapy for patients with acute kidney injury. Int J Nephrol. 2011;2011:739794. Epub 2011 Jun 8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Katz A, Kashtan CE, Greenberg LJ, et al. Hypogammaglobulinemia in uremic infants receiving peritoneal dialysis. J Pediatr. 1990;117:258–61.

    Article  CAS  PubMed  Google Scholar 

  20. Bunchman TE, Wood EG, Lynch RE. Hydrothorax as a complication of pediatric peritoneal dialysis. Perit Dial Bull. 1987;7:237–9.

    Google Scholar 

  21. Forni LG, Hilton PJ. Continuous hemofiltration in the treatment of acute renal failure. N Engl J Med. 1997;336(18):1303–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jenkins R, Harrison H, Chen B, Arnold D, Funk J. Accuracy of intravenous infusion pumps in continuous renal replacement therapies. ASAIO J. 1992;38(4):808–10.

    CAS  PubMed  Google Scholar 

  23. Hackbarth R, et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30:1116–21.

    CAS  PubMed  Google Scholar 

  24. Davenport A, Will EJ, Davison AM. Hyperlactatemia and metabolic acidosis during haemofiltration using lactate-buffered fluids. Nephron. 1991;59:461–5.

    Article  CAS  PubMed  Google Scholar 

  25. Davenport A, Aulton K, Payne RB, Will EJ. Hyperlactatemia and increasing metabolic acidosis in hepatorenal failure treated by hemofiltration. Ren Fail. 1990;12:99–101.

    Article  CAS  PubMed  Google Scholar 

  26. Thomas AN, Guy JM, Kishen R, Geraghty IF, Bowles BJM, Vadgama P. Comparison of lactate and bicarbonate buffered haemofiltation fluids: use in critically ill patients. Nephrol Dial Transplant. 1997;12:1212–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zimmerman D, Cotman P, Ting R, Karanicolas S, Tobe SW. Continuous veno-venous haemodialysis with a novel bicarbonate dialysis solution: prospective cross-over comparison with a lactate buffered solution. Nephrol Dial Transplant. 1999;14:2387–91.

    Article  CAS  PubMed  Google Scholar 

  28. Maxvold NJ, Flynn JT, Smoyer WE, et al. Prospective, crossover comparison of bicarbonate vs lactate-based dialysate for pediatric CVVHD. Blood Purif. 1999;17:27.

    Google Scholar 

  29. Barenbrock M, Hausberg M, Matzkies F, de la Motte S, Schaefer RM. Effects of bicarbonate- and lactate-buffered replacement fluids on cardiovascular outcome in CVVH patients. Kidney Int. 2000;58:1751–7.

    Article  CAS  PubMed  Google Scholar 

  30. McLean AG, Davenport A, Cox D, Sweny P. Effects of lactate-buffered and lactate-free dialysate in CAVHD patients with and without liver dysfunction. Kidney Int. 2000;58:1765–72.

    Article  CAS  PubMed  Google Scholar 

  31. Bunchman TE, Maxvold NJ, Barnett J, Hutchings A, Benfield MR. Pediatric hemofiltration: Normocarb® dialysate solution with citrate anticoagulation. Pediatr Nephrol. 2002;17:150–4.

    Article  PubMed  Google Scholar 

  32. Bunchman TE, Maxvold NJ, Brophy PD. Pediatric convective hemofiltration (CVVH): Normocarb replacement fluid and citrate anticoagulation. Am J Kidney Dis. 2003;42:1248–52.

    Article  PubMed  Google Scholar 

  33. Manns M, Sigler MH, Teehan BP. Continuous renal replacement therapies: an update. Am J Kidney Dis. 1998;32:185–207.

    Article  CAS  PubMed  Google Scholar 

  34. O’Shea SI, Oftel TL, Kovalik EC. Alternative methods of anticoagulation for dialysis-dependent patients with heparin-induced thrombocytopenia. Sem Dial. 2003;16:61–7.

    Article  Google Scholar 

  35. Mehta RL, McDonald BR, Aguilar MM, Ward DM. Regional citrate anticoagulation for continuous arteriovenous hemodialysis in critically ill patients. Kidney Int. 1990;38:976–81.

    Article  CAS  PubMed  Google Scholar 

  36. Chadha V, Garg U, Warady BA, Alon US. Citrate clearance in children receiving continuous venovenous renal replacement therapy. Pediatr Nephrol. 2002;17:819–24.

    Article  PubMed  Google Scholar 

  37. Meier-Kriesche HU, Gitomer J, Finkel K, Dubose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29:748–52.

    Article  CAS  PubMed  Google Scholar 

  38. Monchi M, Berghams D, Ledoux D, Canivet JL, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med. 2004;30:260–5.

    Article  PubMed  Google Scholar 

  39. Brophy PD, Somers MJG, Baum MA, et al. Multi-centre evaluation of anticoagulation in patients receiving Continuous Renal Replacement Therapy (CRRT). Nephrol Dial Transplant. 2005;20:1416–21.

    Article  PubMed  Google Scholar 

  40. Heney D, Essex-Cater A, Brocklebank JT, Bailey CC, Lewis IJ. Continuous arteriovenous haemofiltration in the treatment of tumor lysis syndrome. Pediatr Nephrol. 1990;4:245–7.

    Article  CAS  PubMed  Google Scholar 

  41. Saccente SL, Kohaut EC, Berkow RL. Prevention of tumor lysis syndrome using continuous veno-venous hemofiltration. Pediatr Nephrol. 1995;9:569–73.

    Article  CAS  PubMed  Google Scholar 

  42. Lin JJ, McKenney DW, Price C, Morrison RR, Novotny WE. Continuous venovenous hemodiafiltration in hypernatremic hyperglycemic nonketotic coma. Pediatr Nephrol. 2002;17:969–73.

    Article  PubMed  Google Scholar 

  43. McBryde KD, Bunchman TE, Kudelka TL, Pasko DA, Brophy PD. Hyperosmolar solutions in continuous renal replacement therapy for hyperosmolar acute renal failure: a preliminary report. Pediatr Crit Care Med. 2005;6:220–5.

    Article  PubMed  Google Scholar 

  44. Hingorani SR, Guthrie K, Batchelder A, et al. Acute renal failure after myeloablative hematopoietic cell transplant: incidence and risk factors. Kidney Int. 2005;67:272–7.

    Article  PubMed  Google Scholar 

  45. Borkan SC. Extracorporeal therapies for acute intoxications. Crit Care Clin. 2002;18:393–420.

    Article  CAS  PubMed  Google Scholar 

  46. Bunchman TE, Ferris ME. Management of toxic ingestions with the use of renal replacement therapy. Pediatr Nephrol. 2011;26(4):535–41.

    Article  PubMed  Google Scholar 

  47. Mokhlesi B, Leikin JB, Murray P, Corbridge TC. Adult toxicology in critical care: part II: specific poisonings. Chest. 2003;123:897–922.

    Article  CAS  PubMed  Google Scholar 

  48. Goebel J, Ananth M, Lewy JE. Hemodiafiltration for vancomycin overdose in a neonate with end-stage renal failure. Pediatr Nephrol. 1999;13:423–5.

    Article  CAS  PubMed  Google Scholar 

  49. Meyer RJ, Flynn JT, Brophy PD, et al. Hemodialysis followed by continuous hemofiltration for treatment of lithium intoxication in children. Am J Kidney Dis. 2001;37:1044–7.

    Article  CAS  PubMed  Google Scholar 

  50. Christiansson LK, Kaspersson KE, Kulling PE, Ovrebo S. Treatment of severe ethylene glycol intoxication with continuous arteriovenous hemofiltration dialysis. J Toxicol Clin Toxicol. 1995;33:267–70.

    Article  CAS  PubMed  Google Scholar 

  51. Domoto DT, Brown WW, Bruggensmith P. Removal of toxic levels of N-acetylprocainamide with continuous arteriovenous hemofiltration or continuous arteriovenous hemodiafiltration. Ann Intern Med. 1987;106:550–2.

    Article  CAS  PubMed  Google Scholar 

  52. Okada S, Teramoto S, Matsuoka R. Recovery from theophylline toxicity by continuous hemodialysis with filtration. Ann Intern Med. 2000;133:922.

    Article  CAS  PubMed  Google Scholar 

  53. Pasko DA, Grio M, Thomas S, Mottes T, Brophy PD. Methotrexate transmembrane clearance during albumin based continuous venovenous hemodialysis. Blood Purif. 2005;23:149–74.

    Article  Google Scholar 

  54. Jalan R, Sen S. Extracorporeal albumin dialysis for intoxication from protein-bound agents. Crit Care Med. 2004;32:1436–7.

    Article  PubMed  Google Scholar 

  55. Askenazi DJ, Goldstein SL, Chang IF, Elenberg E, Feig DI. Management of a severe carbamazepine overdose using albumin-enhanced continuous venovenous hemodialysis. Pediatrics. 2004;113:406–9.

    Article  PubMed  Google Scholar 

  56. Churchwell MD, Pasko DA, Smoyer W. Enhanced valproic acid dialytic clearance with an albumin-based dialysate in continuous venovenous hemodialysis. Blood Purif. 2005;23:149–74.

    Article  Google Scholar 

  57. Braun MC, Welch TR. Continuous venovenous hemodiafiltration in the treatment of acute hyperammonemia. Am J Nephrol. 1998;18:531–3.

    Article  CAS  PubMed  Google Scholar 

  58. Jouvet P, Poggi F, Rabier D, et al. Continuous venovenous haemodiafiltration in the acute phase of neonatal maple syrup urine disease. J Inherit Metab Dis. 1997;20:463–72.

    Article  CAS  PubMed  Google Scholar 

  59. Wong KY, Wong SN, Lam SY, Tam S, Tsoi NS. Ammonia clearance by peritoneal dialysis and continuous arteriovenous hemodiafiltration. Pediatr Nephrol. 1998;12:589–91.

    Article  CAS  PubMed  Google Scholar 

  60. Picca S, Dionisi-Vici C, Abeni D, et al. Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol. 2001;16:862–7.

    Article  CAS  PubMed  Google Scholar 

  61. Deodato F, Boenzi S, Rizzo C, et al. Inborn errors of metabolism: an update on epidemiology and on neonatal-onset hyperammonemia. Acta Paediatr Suppl. 2004;445:18–21.

    Google Scholar 

  62. Bunchman TE, Barletta GM, Winters JW, et al. Phenylacetate and benzoate clearance in a hyperammonemic infant on sequential hemodialysis and hemofiltration. Pediatr Nephrol. 2007;22(7):1062–5.

    Article  PubMed  Google Scholar 

  63. Eding DM, Jelsma LR, Metz CJ, et al. Innovative techniques to decrease blood exposure and minimize interruptions in pediatric continuous renal replacement therapy. Crit Care Nurse. 2011;31(1):64–71.

    Article  PubMed  Google Scholar 

  64. Proulx F, Fayon M, Farrell CA, Lacroix J, Gauthier M. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 1996;109:1033–7.

    Article  CAS  PubMed  Google Scholar 

  65. Askenazi DJ, Ambalavanan N, Hamilton K, Cutter G, Laney D, Kaslow R, Georgeson K, Barnhart DC, Dimmitt RA. Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2011;12(1):e1–6.

    Article  PubMed  Google Scholar 

  66. Goldstein SL, Symons JM, Somers MJG, et al. Pediatric CRRT for multiorgan dysfunction syndrome (MODS): a prospective pediatric (ppCRRT) CRRT registry group report. Blood Purif. 2005;23:149–74.

    Article  Google Scholar 

  67. Bunchman TE. Plasmapheresis and renal replacement therapy in children. Curr Opin Pediatr. 2002;14:310–4.

    Article  PubMed  Google Scholar 

  68. Ponikvar R, Kandus A, Urbančič A, Kornhauser AG, Primožič J, Ponikvar JB. Continuous renal replacement therapy and plasma exchange in newborns and infants. Artif Organs. 2002;26:163–8.

    Article  PubMed  Google Scholar 

  69. Symons JM, Brophy PD, Gregory MJ, et al. Continuous renal replacement therapy in children up to 10 kg. Am J Kidney Dis. 2003;41(5):984–9.

    Article  PubMed  Google Scholar 

  70. Paden ML, Warshaw BL, Heard ML, Fortenberry JD. Recovery of renal function and survival after continuous renal replacement therapy during extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2011;12(2):153–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Meyer RJ, Brophy PD, Bunchman TE, et al. Survival and renal function in pediatric patients following extracorporeal life support with hemofiltration. Pediatr Crit Care Med. 2001;2(3):238–42.

    Article  PubMed  Google Scholar 

  72. Brophy PD, Mottes TA, Kudelka TL, et al. AN-69 membrane reactions are pH-dependent and preventable. Am J Kidney Dis. 2001;38(1):173–8.

    Article  CAS  PubMed  Google Scholar 

  73. Parshuram CS, Cox PN. Neonatal hyperkalemic-hypocalcemic cardiac arrest associated with initiation of blood-primed continuous venovenous hemofiltration. Pediatr Crit Care Med. 2002;3(1):67–9.

    Article  PubMed  Google Scholar 

  74. Pasko DA, Mottes TA, Mueller BA. Pre dialysis of blood prime in continuous hemodialysis normalizes pH and electrolytes. Pediatr Nephrol. 2003;18:1177–83.

    Article  PubMed  Google Scholar 

  75. Hackbarth RM, Eding D, Smith CG, Koch A, Sanfilippo DJ, Bunchman TE. Zero-balance ultrafiltration (Z-BUF) in blood-primed CRRT circuits achieves electrolyte and acid-base homeostasis prior to patient connection. Pediatr Nephrol. 2005;20:1328–33.

    Article  PubMed  Google Scholar 

  76. Joy MS, Matzke GR, Armstrong DK, Marx MA, Zarowitz BJ. A primer on continuous renal replacement therapy for critically ill patients. Ann Pharmacother. 1998;32:362–75.

    Article  CAS  Google Scholar 

  77. Monaghan R, Watters JM, Clancey SM, Moulton SB, Rabin EZ. Uptake of glucose during continuous arteriovenous hemofiltration. Crit Care Med. 1993;21:1159–63.

    Article  CAS  PubMed  Google Scholar 

  78. Frankenfield DC, Reynolds HN, Badellino MM, Wiles 3rd CE. Glucose dynamics during continuous hemodiafiltration and total parenteral nutrition. Intensive Care Med. 1995;21:1016–22.

    Article  CAS  PubMed  Google Scholar 

  79. Fiaccadori E, Lombardi M, Leonardi S, Roteli CF, Tortorella G, Borghetti A. Prevalence and clinical outcomes associated with preexisting malnutrition in acute renal failure: a prospective cohort study. J Am Soc Nephrol. 1999;10:581–93.

    CAS  PubMed  Google Scholar 

  80. Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med. 2000;28:1161–5.

    Article  CAS  PubMed  Google Scholar 

  81. Berger MM, Shenkin A, Revelly JP, et al. Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr. 2004;80:410–6.

    CAS  PubMed  Google Scholar 

  82. Barletta JF, Barletta GM, Brophy PD, et al. Medication errors and patient complications with continuous renal replacement therapy. Pediatr Nephrol. 2006;21:842–5.

    Article  PubMed  Google Scholar 

  83. Goldstein SL, Currier H, Graf JM, Cosio CC, Brewer ED, Sachdeva R. Outcomes in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107:1309–12.

    Article  CAS  PubMed  Google Scholar 

  84. Goldstein SL, Somers MJ, Baum MA, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    Article  Google Scholar 

  85. Donckerwolcke RA, Bunchman TE. Hemodialysis in infants and small children. Pediatr Nephrol. 1994;8(1):103–6.

    Article  CAS  PubMed  Google Scholar 

  86. Bunchman TE, Hackbarth RM, Maxvold NJ, et al. Prevention of dialysis disequilibrium by use of CVVH. Int J Artif Organs. 2007;30(5):441–4.

    CAS  Google Scholar 

  87. Fouque D, Kalantar-Zadeh K, Kopple J, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Bunchman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Sreedhar, S.S., Bunchman, T.E., Maxvold, N.J. (2014). Renal Replacement Therapy. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6416-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6416-6_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6415-9

  • Online ISBN: 978-1-4471-6416-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics