Electrolyte Disorders in the PICU



Only a small fraction of acutely ill children are hospitalized with an electrolyte disorder as their primary diagnosis. However, many patients encounter secondary homeostatic imbalances that involve one or more of the following: sodium, potassium, calcium, magnesium and phosphorous. Abnormalities in the serum concentrations of these electrolytes could result from an underlying disease process; however, more frequently they are the result of complications, end organ injury or iatrogenic interventions such as fluid and electrolyte therapy, medications, or applications of critical care technology (positive pressure ventilation or renal replacement therapy), and should therefore be anticipated and prevented. Because of the fragile state of many of the pediatric intensive care unit (PICU) patients, electrolyte imbalances may have profound effects on patient outcomes, and in their extreme forms may be life-threatening. Careful, stepwise management is essential, as aggressive correction may at times result in further injury. This chapter outlines the pathophysiology and management of electrolyte disorders in the PICU. The authors have attempted to include a practical diagnostic and therapeutic approach to the most common disorders, but also provide a comprehensive differential diagnosis that would enable the practicing clinician to capture less common etiologies for electrolyte abnormalities in critically ill children.


Electrolytes Sodium Potassium Calcium Magnesium Phosphorus 


  1. 1.
    Anderson RJ, Chung HM, Kluge R, Schrier RW. Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med. 1985;102(2):164–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290(19):2581–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Baran D, Hutchinson TA. Outcome of hyponatremia in the general hospital population. Clin Nephrol. 1984;22:72–4.PubMedGoogle Scholar
  4. 4.
    Mange K, Matsuura D, Cizman B, et al. Language guiding therapy: the case of dehydration versus volume depletion. Ann Intern Med. 1997;127:848–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Katz MA. Hyperglycemia-induced hyponatremia: calculation of expected serum sodium depression. N Engl J Med. 1973;289:843–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Hillier TA, Abbott RD, Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med. 1999;106:399.PubMedCrossRefGoogle Scholar
  7. 7.
    Weisberg LS. Pseudohyponatremia: a reappraisal. Am J Med. 1989;86(3):315–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Bruce RC, Kliegman RM. Hyponatremic seizures secondary to oral water intoxication in infancy: association with commercial bottled drinking water. Pediatrics. 1997;100:E4.PubMedCrossRefGoogle Scholar
  9. 9.
    Ganong CA, Kappy MS. Cerebral salt wasting in children: the need for recognition and treatment. Am J Dis Child. 1993;147:369.CrossRefGoogle Scholar
  10. 10.
    Wijdicks EF, Vermeulen M, ten Haaf JA, Hijdra A, Bakker WH, Van Gijn J. Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol. 1985;18(2):211–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Sivakumar V, Rajshekhar V, Chandy MJ. Management of neurosurgical patients with hyponatremia and natriuresis. Neurosurgery. 1994;34(2):269–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Harrigan MR. Cerebral salt wasting syndrome. Crit Care Clin. 2001;17(1):125–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Taplin CE, Cowell CT, Silink M, Ambler GR. Fludrocortisone therapy in cerebral salt wasting. Pediatrics. 2006;118:e1904–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Cooper MS, Stewart P. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003;348:727–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Garcia GE, Milano MG, Lopez S, Valls ME, Calvo M. Adrenal function in children with sepsis and septic shock. An Esp Pediatr. 2001;54(5):439–43.CrossRefGoogle Scholar
  16. 16.
    Hatherill M, Tibby SM, Hilliard T, Turner C, Murdoch IA. Adrenal insufficiency in septic shock. Arch Dis Child. 1999;80(1):51–5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Catalano RD, Parameswaran V, Ramachandran J, Trunkey DD. Mechanisms of adrenocortical depression during Escherichia coli shock. Arch Surg. 1984;119:145–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Linas SL, Berl T, Robertson GL, et al. Role of vasopressin in the impaired water excretion of glucocorticoid deficiency. Kidney Int. 1818;1980:58–67.Google Scholar
  19. 19.
    Brouh Y, Paut O, Tsimaratos M, Camboulives J. Postoperative hyponatremia in children: pathophysiology, diagnosis and treatment. Ann Fr Anesth Reanim. 2004;23(1):39–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Bilbrey GL, Beisel WR. Depression of free water clearance during pneumococcal bacteremia. Ann Surg. 1973;177:112–20.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Poddar U, Singhi S, Ganguli NK, Sialy R. Water electrolyte homeostasis in acute Bronchiolitis. Indian Pediatr. 1995;32:59–65.PubMedGoogle Scholar
  22. 22.
    Kanakriyeh M, Carvajal HF, Vallone AM. Initial fluid therapy for children with meningitis with consideration of the syndrome of inappropriate antidiuretic hormone. Clin Pediatr. 1987;26:126–30.CrossRefGoogle Scholar
  23. 23.
    Dhawan A, Narang A, Singhi S. Hyponatremia and the inappropriate ADH syndrome in pneumonia. Ann Trop Paediatr. 1992;12:455–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Powell KR, Sugarman LI, Eskenazi AE, et al. Normalization of plasma arginine vasopressin concentrations when children with meningitis are given maintenance plus replacement fluid therapy. J Pediatr. 1990;117:515–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Duke T, Molyneux EM. Intravenous fluids for seriously ill children: time to reconsider. Lancet. 2003;363:1320–3.CrossRefGoogle Scholar
  26. 26.
    Hoorn EJ, Geary D, Robb M, Halperin ML, Bohn D. Acute hyponatremia related to intravenous fluid administration in hospitalized children: an observational study. Pediatrics. 2004;113:1279–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Yung M, Keeley S. Randomised controlled trial of intravenous maintenance fluids. J Paediatr Child Health. 2009;45:9–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Montañana PA, Alapont VM, Ocón AP, López PO, Prats JLL, Parreño JDT. The use of isotonic fluid as maintenance therapy prevents iatrogenic hyponatremia in pediatrics: a randomized, controlled open study*. Pediatr Crit Care Med. 2008;9(6):589–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Kannan L, Lodha R, Vivekanandhan S, Bagga A, Kabra S, Kabra M. Intravenous fluid regimen and hyponatraemia among children; a randomized controlled trial. Pediatr Nephrol. 2010;25:2303–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Neville K, Sandeman D, Rubinstein A, Henry G, McGlynn M, Walker J. Prevention of hyponatremia during maintenance intravenous fluid administration: a prospective randomized study of fluid type versus fluid rate. J Pediatr. 2010;156(2):313–9.e2.PubMedCrossRefGoogle Scholar
  31. 31.
    Strange K. Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol. 1992;3(1):12–27.PubMedGoogle Scholar
  32. 32.
    Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. 5th ed. New York: McGraw-Hill; 2001. p. 716–20, 761–4.Google Scholar
  33. 33.
    Ellis SJ. Severe hyponatremia: complications and treatment. QJM. 1995;88:905.PubMedGoogle Scholar
  34. 34.
    Arieff AI, Ayus JC, Fraser CL. Hyponatremia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Xenos C, Sgouros S, Natarajan K. Ventricular volume change in childhood. J Neurosurg. 2002;97(3):584–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Ayus JC, Wheeler JM, Arieff AI. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med. 1992;117:891.PubMedCrossRefGoogle Scholar
  37. 37.
    Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med. 2002;314:1529–35.CrossRefGoogle Scholar
  38. 38.
    McManus ML, Churchwell KB, Strange K. Regulation of cell volume in health and disease. N Engl J Med. 1995;333(19):1260–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Brunner JE, Redmond JM, Haggar AM, Kruger DF, Elias SB. Central pontine myelinolysis and pontine lesions after rapid correction of hyponatremia: a prospective magnetic resonance imaging study. Ann Neurol. 1990;51(6):383–6.Google Scholar
  40. 40.
    Karp BI, Laureno R. Pontine and extrapontine myelinolysis: a neurologic disorder following rapid correction of hyponatremia. Medicine (Baltimore). 1993;72:359–73.CrossRefGoogle Scholar
  41. 41.
    Moritz ML, Ayus JC. Disorders of water metabolism in children: hyponatremia and hypernatremia. Pediatr Rev. 2002;23(11):371–80.PubMedGoogle Scholar
  42. 42.
    Ayus JC, Levein R, Arieff AI. Treatment of symptomatic hyponatremia and its relation to brain damage. A prospective study. N Engl J Med. 1987;317(19):1190–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Gross P. Treatment of severe hyponatremia. Kidney Int. 2001;60(6):2417–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Sarnaik AP, Meert K, Hackbarth R, Fleischmann L. Management of hyponatremic seizures in children with hypertonic saline: a safe and effective strategy. Crit Care Med. 1991;19(6):758–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Moritz ML, Ayus JC. Dysnatremia in the critical care setting. Contrib Nephrol. 2004;144:132–57.PubMedCrossRefGoogle Scholar
  46. 46.
    Ayus JC, Arieff AI. Pathogenesis and prevention of hyponatremic encephalopathy. Endocrinol Metab Clin North Am. 1993;22(2):425–46.PubMedGoogle Scholar
  47. 47.
    Hantman D, Rossier B, Zohlman R, Schrier R. Rapid correction of hyponatremia in the syndrome of inappropriate secretion of antidiuretic hormone: an alternative treatment to hypertonic saline. Ann Intern Med. 1973;78(6):870–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Perks WH, Walters EH, Tams IP, Prowse K. Demeclocycline in the treatment of the syndrome of inappropriate secretion of antidiuretic hormone. Thorax. 1979;34(3):324–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Saito T, Ishikawa S, Abe K, et al. Acute aquaresis by the nonpeptide arginine vasopressin (AVP) antagonist OPC-31260 improves hyponatremia in patients with syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Clin Endocrinol Metab. 1997;82(4):1057–64.CrossRefGoogle Scholar
  50. 50.
    Wong LL, Verbalis JG. Vasopressin V2 receptor antagonists. Cardiovasc Res. 2001;51:391–402.PubMedCrossRefGoogle Scholar
  51. 51.
    Rozen-Zvi B, Yhav D, Gheorghiade M, Korzets A, Leibovici L, Gafter U. Vasopressin receptor antagonists for the treatment of Hyponatremia: systematic review and meta-analysis. Am J Kidney Dis. 2010;56:325–37.PubMedCrossRefGoogle Scholar
  52. 52.
    Berl T, Quittnat-Pelletier F, Verbalis JG, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21:705–12.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Polderman KH, Schreuder WO, Strack van Schijndel RJ, Thys LG. Hypernatremia in the intensive care unit: an indicator of quality of care? Crit Care Med. 1999;27:1105–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Palevsky PM, Bhagrath R, Greenberg A. Hypernatremia in hospitalized patients. Ann Intern Med. 1996;27:1041–2.Google Scholar
  55. 55.
    Moritz ML, Ayus JC. The changing pattern of hypernatremia in hospitalized children. Pediatrics. 1999;104:435–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Mandal AK, Sanklayen MG, Hillman NM, Markert RJ. Predictive factors for high mortality in hypernatremic patients. Am J Emerg Med. 1997;15(2):130–2.PubMedCrossRefGoogle Scholar
  57. 57.
    Fraser CL, Arieff AI. Hepatic encephalopathy. N Engl J Med. 1985;313(14):865–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Warren SE, Mitas 2nd JA, Swerdlin AH. Hypernatremia in hepatic failure. JAMA. 1980;243(12):1257–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Gault MH, Dixon ME, Doyle M, Cohen WM. Hypernatremia, azotemia, and dehydration due to high-protein tube feeding. Ann Intern Med. 1968;68:778.PubMedCrossRefGoogle Scholar
  60. 60.
    Rowland TW, Zori RT, Lafleur WR, Reiter EO. Malnutrition and hypernatremia in breast-fed infants. JAMA. 1982;247:1016–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Ayus JC, Armstrong DL, Arieff AI. Effects of hypernatremia in the central nervous system and its therapy in rats and rabbits. J Physiol. 1996;492(Pt 1):243–55.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Grant PJ, Tate GM, Hughes JR, Davies JA, Prentice CR. Does hypernatremia promote thrombosis? Thromb Res. 1985;40(3):393–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Finberg L, Luttrell C, Redd H. Pathogenesis of lesions in the nervous system in hyponatremic states. II. Experimental studies of gross anatomic changes and alteration of chemical composition of the tissues. Pediatrics. 1959;23(1 Pt 1):243–55.Google Scholar
  64. 64.
    Luttrell CN, Finberg L. Hemorrhagic encephalopathy induced by hypernatremia. I Clinical, laboratory, and pathological observation. AMA Arch Neurol Psychiatry. 1959;81(4):424–32.PubMedCrossRefGoogle Scholar
  65. 65.
    Clark WR. Diffuse demyelinating lesions of the brain after the rapid development of hypernatremia. West J Med. 1992;157(5):571–3.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Finberg L. Pathogenesis of lesions in the nervous system in hypernatremic states. I. Clinical observations of infants. Pediatrics. 1959;23(1 Pt 1):40–5.PubMedGoogle Scholar
  67. 67.
    Abramovici MI, Singhal PC, Trachtman H. Hypernatremia and rhabdomyolysis. J Med. 1992;23(1):17–28.PubMedGoogle Scholar
  68. 68.
    Lien YH, Shapiro JI, Chan L. Effects of hypernatremia on organic brain osmoles. J Clin Invest. 1990;85:1427–35.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Blum D, Brasseur D, Kahn A, et al. Safe oral rehydration of hypertonic dehydration. J Pediatr Gastroenterol Nutr. 1986;5:232–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Kahn A, Brachet E, Blum D. Controlled fall in natremia and risk of seizures in hypertonic dehydration. Intensive Care Med. 1979;5:27–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Fang C, Mao J, Dai Y, et al. Fluid management of hypernatremic dehydration to prevent cerebral edema: a retrospective case control study of 97 children in China. J Paediatr Child Health. 2010;46:301–3.PubMedCrossRefGoogle Scholar
  72. 72.
    Rosenfeld W, deRomana GL, Kleinman R, Finberg L. Improving the clinical management of hypernatremic dehydration: observations from a study of 67 infants with this disorder. Clin Pediatr (Phila). 1977;16(5):411–7.CrossRefGoogle Scholar
  73. 73.
    Hogan GR, Pickering LK, Dodge PR, Shepard JB, Master S. Incidence of seizures that follow rehydration of hypernatremic rabbits with intravenous glucose or fructose solutions. Exp Neurol. 1985;87(2):249–59.PubMedCrossRefGoogle Scholar
  74. 74.
    Halterman R, Ber T. Therapy of dysnatremic disorders. In: Brady H, Wilcox C, editors. Therapy in nephrology and hypertension. Philadelphia: Saunders; 1999. p. 257–69.Google Scholar
  75. 75.
    Pizarro D, Posada G, Villavicencio N, Mohs E, Levine MM. Oral rehydration in hypernatremic and hyponatremic diarrheal dehydration. Am J Dis Child. 1983;137(8):730–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Janjua NR, Jonassen TE, Langhoff S, Thomsen K, Christensen S. Role of sodium depletion in acute antidiuretic effect of bendroflumethiazide in rats with nephrogenic diabetes insipidus. J Pharmacol Exp Ther. 2001;299:307–13.PubMedGoogle Scholar
  77. 77.
    Marino PL, editor. The ICU book. Philadelphia: Lippincott Williams & Wilkins; 1991. p. 479.Google Scholar
  78. 78.
    Ward C, Arkin D, Benumof J, Saidman L. Arterial versus venous potassium: clinical implications. Crit Care Med. 1978;6(5):335–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. 5th ed. New York: McGraw Hill; 2001.Google Scholar
  80. 80.
    Androgue HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med. 1981;71:456.CrossRefGoogle Scholar
  81. 81.
    Greenbaum LA. Electrolyte and acid-base disorders. In: Behrman III RE, Kliegman IV R, Jenson HB, editors. Nelson’s textbook of pediatrics. 17th ed. Philadelphia: Saunders; 2004. p. 206.Google Scholar
  82. 82.
    Knochel JP. Etiologies and management of potassium deficiency. Hosp Pract. 1987;22:153–62.CrossRefGoogle Scholar
  83. 83.
    Boelhouwer RU, Bruining HA, Ong GL. Correlations of serum potassium fluctuations with body temperature after major surgery. Crit Care Med. 1987;15(4):310–2.PubMedCrossRefGoogle Scholar
  84. 84.
    Depner TA, Magee JA. Severe hypokalemia associated with pseudo-hypoxemia in acute nonlymphocytic leukemia. West J Med. 1988;149:332.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Blevins RD, Whitty AJ, Rubenfire M, Maciejko JJ. Dopamine and dobutamine induce hypokalemia in anesthetized dogs. J Cardiovasc Pharmacol. 1989;13:662.PubMedCrossRefGoogle Scholar
  86. 86.
    Gabow PA, Peterson LN. Disorders of potassium metabolism. In: Schreier RW, editor. Renal and electrolyte disorders. Boston: Little Brown and Co; 1992. p. 231–85.Google Scholar
  87. 87.
    Grace GT, Shin B, Levin P, Stone HH. Immediate post-traumatic hypokalemia. Curr Surg. 1988;45:463.PubMedGoogle Scholar
  88. 88.
    Salerno DM. Postresuscitation hypokalemia in a patient with a normal prearrest serum potassium level. Ann Intern Med. 1988;108:836.PubMedCrossRefGoogle Scholar
  89. 89.
    Johnson R, Shafique T, Sirois C, Weintraub R, Comunale M. Potassium concentrations and ventricular ectopy: a prospective, observational study in post-cardiac surgery patients. Crit Care Med. 1999;27(1):2430–4.PubMedCrossRefGoogle Scholar
  90. 90.
    Janson CL, Marx JA. Fluid and electrolyte balance. In: Rosen P, Barkin RM, editors. Emergency medicine: concepts and clinical practice. St Louis: Mosby Year Book; 1992.Google Scholar
  91. 91.
    Moffett B, McDade E, Rossano J, Dickerson H, Nelson D. Enteral potassium supplementation in a pediatric cardiac intensive care unit: evaluation of a practice change. Pediatr Crit Care Med. 2011;12(5):552–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Greenbaum LA. Electrolyte and acid-base disorders. In: Behrman III RE, Kliegman IV R, Jenson HB, editors. Nelson’s textbook of pediatrics. 17th ed. Philadelphia: Saunders; 2004. p. 204.Google Scholar
  93. 93.
    Surawicz B, Chlebus H, Mazzoleni H. Hemodynamic and electrocardiographic effects of hyperpotassemia: differences in response to slow and rapid increase in concentration of plasma potassium. Am Heart J. 1967;73:647.PubMedCrossRefGoogle Scholar
  94. 94.
    Mimran A, Ribstein J, Sissmann J. Effects of calcium antagonists on adrenaline-induced hypokalemia. Drugs. 1993;46 Suppl 2:103–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Blumberg A, Weidmann P, Shaw S, Gnadinger M. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med. 1988;85:507–12.PubMedCrossRefGoogle Scholar
  96. 96.
    Blumberg A, Roser HW, Zehnder C, Muller-Brand J. Plasma potassium in patients with terminal renal failure during and after hemodialysis: relationship with dialytic potassium removal and total body potassium. Nephrol Dial Transplant. 1997;12:1629–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Dixon M, Webb EC. Enzymes. 2nd ed. London: Longman; 1964.Google Scholar
  98. 98.
    Bellorin-Font E, Martin KJ. Regulation of PTH-receptor-cyclase system of canine kidney: effects of calcium, magnesium and guanine nucleotides. Am J Physiol. 1981;241:364.Google Scholar
  99. 99.
    Gupta RK, Gupta P, Moore RD. NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng. 1984;13:221.PubMedCrossRefGoogle Scholar
  100. 100.
    Walser M. Magnesium metabolism. Ergeb Physiol. 1967;59:185.PubMedCrossRefGoogle Scholar
  101. 101.
    Fiser RT, Torres Jr A, Butch AW, Valentine JL. Ionized magnesium concentrations in critically ill children. Crit Care Med. 1998;26:2048–52.PubMedCrossRefGoogle Scholar
  102. 102.
    Frankel H, Haskell R, Lee SY, Miller D, Rotondo M, Schwab CW. Hypomagnesemia in trauma patients. World J Surg. 1999;23:966–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Malon A, Brockmann C, Fijalkowska-Morawska J, Rob P, Maj-Zurawska M. Ionized magnesium in erythrocytes – the best magnesium parameter to observe hypo-or hyper magnesemia. Clin Chim Acta. 2004;349:67–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Millart H, Durlach V, Durlach J. Red blood cell magnesium concentrations: analytical problems and significance. Magnes Res. 1995;8:65–76.PubMedGoogle Scholar
  105. 105.
    Huijgen HJ, Soesan M, Sanders R, Mairuhu WM, Kesecioglu J, Sanders GT. Magnesium levels in critically ill patients. What should we measure? Am J Clin Pathol. 2000;114:688–95.PubMedCrossRefGoogle Scholar
  106. 106.
    Shils ME. Experimental human magnesium depletion. I. Clinical observations and blood chemistry alterations. Am J Clin Nutr. 1964;15:133–43.PubMedGoogle Scholar
  107. 107.
    Alfrey AC. Normal and abnormal magnesium metabolism. In: Schreier RW, editor. Renal and electrolyte disorders. Boston: Little Brown and Co; 1992. p. 371.Google Scholar
  108. 108.
    Alexandridis G, Liberopoulos E, Elisaf M. Aminoglycoside-induced reversible tubular dysfunction. Pharmacology. 2003;67:118–20.PubMedCrossRefGoogle Scholar
  109. 109.
    Kang HS, Kerstan D, Dai L, Ritchie G, Quamme GA. Aminoglycosides inhibit hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells. Can J Physiol Pharmacol. 2000;78:595–602.PubMedCrossRefGoogle Scholar
  110. 110.
    Seelig MS. Electrocardiographic patterns of magnesium depletion appearing in alcoholic heart disease. Ann N Y Acad Sci. 1969;162:906.PubMedCrossRefGoogle Scholar
  111. 111.
    Andoh TF, Burdmann EA, Fransechini N, Houghton DC, Bennett WM. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506. Kidney Int. 1996;50:1110–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Nijenhuis T, Hoenderop JG, Bindels RJ. Downregulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol. 2004;15:549–57.PubMedCrossRefGoogle Scholar
  113. 113.
    Wong NLM, Dirks JH. Cyclosporine-induced hypomagnesemia and renal magnesium wasting in rats. Clin Sci. 1988;75:505.CrossRefGoogle Scholar
  114. 114.
    Chernow B, Bamberger S, Stoiko M, et al. Hypomagnesemia in patients in postoperative intensive care. Chest. 1989;95:391–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Verive MJ, Irazuzta J, Steinhart CM, Orlowski JP, Jaimovich DG. Evaluating the frequency rate of hypomagnesemia in critically ill pediatric patients by using multiple regression analysis and a computer-based neural network. Crit Care Med. 2000;28:3534–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Mencia S, De Lucas N, Lopez-Herce J, Munoz R, Carrillo A, Garrido G. Magnesium metabolism after cardiac surgery in children. Pediatr Crit Care Med. 2002;3:158–62.PubMedCrossRefGoogle Scholar
  117. 117.
    Furlanetto TW, Faulhaber GAM. Hypomagnesemia and proton pump inhibitors. Arch Intern Med. 2011;171:1391–2.PubMedCrossRefGoogle Scholar
  118. 118.
    Shils ME. Experimental human magnesium depletion. Medicine (Baltimore). 1969;48:61.CrossRefGoogle Scholar
  119. 119.
    Weisleder P, Tobin JA, Kerrigan 3rd JF, Bodensteiner JB. Hypomagnesemic seizures: case report and presumed pathophysiology. J Child Neurol. 2002;17:59–61.PubMedCrossRefGoogle Scholar
  120. 120.
    Welt LG, Gitelman H. Disorders of magnesium metabolism. Dis Mon. 1965;1:1.Google Scholar
  121. 121.
    Turlapaty PD, Altura BM. Magnesium deficiency produces spasms of coronary arteries. Science. 1980;208:198–200.PubMedCrossRefGoogle Scholar
  122. 122.
    Boriss MN, Papa L. Magnesium: a discussion of its role in the treatment of ventricular dysrhythmia. Crit Care Med. 1988;16:292.PubMedCrossRefGoogle Scholar
  123. 123.
    Ramee SR, White CJ, Svinarich JT, et al. Torsades de pointes and magnesium deficiency. Am Heart J. 1985;109:164.PubMedCrossRefGoogle Scholar
  124. 124.
    Seller RH, Cangiano J, Kim EE, Mendelsohn S, Brest AN, Swartz C. Digitalis toxicity and hypomagnesemia. Am Heart J. 1970;79:57.PubMedCrossRefGoogle Scholar
  125. 125.
    Davis WH, Ziady F. The effect of oral magnesium chloride therapy on the PTC and QUC intervals of the electrocardiogram. S Afr Med J. 1978;53:591.PubMedGoogle Scholar
  126. 126.
    England MR, Gordon G, Salem M, Chernow B. Magnesium administration and dysrhythmias after cardiac surgery. A placebo-controlled, double-blind, randomized trial. JAMA. 1992;268:2395–402.PubMedCrossRefGoogle Scholar
  127. 127.
    Dorman BH, Sade RM, Burnette JS, et al. Magnesium supplementation in the prevention of arrhythmias in pediatric patients undergoing surgery for congenital heart defects. Am Heart J. 2000;139(3):522–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Kraft LE, Katholi RE, Woods WT, James TN. Attenuation by magnesium of the electrophysiologic effects of hyperkalemia on human and canine heart cells. Am J Cardiol. 1980;45:1189.PubMedCrossRefGoogle Scholar
  129. 129.
    Whang R, Flink EB, Dyckner T, Wester PO, Aikawa JK, Ryan MP. Magnesium depletion as a cause of refractory potassium repletion. Arch Intern Med. 1985;145:1686.PubMedCrossRefGoogle Scholar
  130. 130.
    Spencer H, Lesniak M, Gatzo CA, Osis D, Lender M. Magnesium absorption and metabolism in patients with chronic renal failure and in patients with normal renal function. Gastroenterology. 1980;79:26.PubMedGoogle Scholar
  131. 131.
    Mordes JP, Wacker WE. Excess magnesium. Pharmacol Rev. 1978;29:273.Google Scholar
  132. 132.
    Qureshi T, Melonakos TK. Acute hypermagnesemia after laxative use. Ann Emerg Med. 1996;28:552–5.PubMedCrossRefGoogle Scholar
  133. 133.
    Weber CA, Santiago RM. Hypermagnesemia: a potential complication during treatment of theophylline intoxication with oral activated charcoal and magnesium-containing cathartics. Chest. 1989;95:56.PubMedCrossRefGoogle Scholar
  134. 134.
    Agus ZS, Wasserstein A, Goldfarb S. Disorders of calcium and magnesium homeostasis. Am J Med. 1982;72:473–88.PubMedCrossRefGoogle Scholar
  135. 135.
    Bringhurst FR, Demay MB, Krane SM, Kronenberg HM. Bone and mineral metabolism in health and disease. In: Kasper DL, Fauci AS, Longo DL, et al., editors. Harrison’s principles of internal medicine. 16th ed. New York: McGraw Hill Co; 2005. p. 2244.Google Scholar
  136. 136.
    Ciarallo L, Brousseau D, Reinert S. Higher-dose intravenous magnesium therapy for children with moderate to severe acute asthma. Arch Pediatr Adolesc Med. 2000;154:979–83.PubMedCrossRefGoogle Scholar
  137. 137.
    Randall Jr RE, Chen MD, Spray CC, Rossmeisl EC. Hypermagnesemia in renal failure. Ann Intern Med. 1949;61:73.CrossRefGoogle Scholar
  138. 138.
    Rasch DK, Huber PA, Richardson CJ, L’Hommedieu CS, Nelson TE, Reddi R. Neurobehavioral effects of neonatal hypermagnesemia. J Pediatr. 1982;100:272–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Teng RJ, Liu HC, Tsou Yau KI. Neonatal hypermagnesemia: report of one case. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1989;30:333–6.PubMedGoogle Scholar
  140. 140.
    Lang RM, Fellner SK, Neumann A, Bushinsky DA, Borow KM. Left ventricular contractility varies directly with blood ionized calcium. Ann Intern Med. 1988;108:524–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Landernson JH, Lewis JW, Boyd JC. Failure of total calcium corrected for protein, albumin and pH to correctly assess free calcium status. J Clin Endocrinol Metab. 1982;46:986–93.Google Scholar
  142. 142.
    Koch SM, Mehlhorn U, McKinley BA, Irby SL, Warters RD, Allen SJ. Arterial blood sampling devices influence ionized calcium measurements. Crit Care Med. 1995;23:1825–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Cardenas-Rivero N, Chernow B, Stoiko MA, Nussbaum SR, Todres ID. Hypocalcemia in critically ill children. J Pediatr. 1989;114:946–51.PubMedCrossRefGoogle Scholar
  144. 144.
    Sanchez GJ, Venkataraman PS, Pryor RW, Parker MK, Fry HD, Blick KE. Hypercalcitoninemia and hypocalcemia in acutely ill children: studies in serum calcium, blood ionized calcium, and calcium-regulating hormones. J Pediatr. 1989;114:952–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Zaloga GP, Chernow B. The multifactorial basis for hypocalcemia during sepsis: studies of the parathyroid hormone-vitamin D axis. Ann Intern Med. 1987;107:36–41.PubMedCrossRefGoogle Scholar
  146. 146.
    Desai TK, Carlson RW, Geheb MA. Prevalence and clinical implications of hypocalcemia in acutely ill patients in a medical intensive care setting. Am J Med. 1988;84:209–14.PubMedCrossRefGoogle Scholar
  147. 147.
    Greenbaum LA. Electrolyte and acid-base disorders. In: Behrman III RE, Kliegman IV R, Jenson HB, editors. Nelson’s textbook of pediatrics. 17th ed. Philadelphia: Saunders; 2004. p. 208.Google Scholar
  148. 148.
    Lind L, Carlstedt F, Rastad J, Stiernstrom H, Stridsberg M, Ljunggren O. Hypocalcemia and parathyroid hormone secretion in critically ill patients. Crit Care Med. 2000;28:93–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Mizrah A, Lonson RD, Gribetz D. Neonatal hypocalcemia – its causes and treatment. N Engl J Med. 1968;278:1163.CrossRefGoogle Scholar
  150. 150.
    Broner CW, Stidham GL, Westenkirchner DF, Watson DC. A prospective, randomized, double-blind comparison of calcium chloride and calcium gluconate therapies for hypocalcemia in critically ill children. J Pediatr. 1990;117:986–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Castillo W, Quintos M, Wong P, et al. Calcium chloride infusion in infants following cardiac surgery does not improve hemodynamics. Crit Care Med. 2003;31:A156.Google Scholar
  152. 152.
    Hauser GJ, Gale AD, Fields AI. Immobilization hypercalcemia: unusual presentation with seizures. Pediatr Emerg Care. 1989;5:105–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Popovtzer MM, Subryan VL, Alfrey AC, et al. The acute effect of chlorothiazide on serum ionized calcium. Evidence for a parathyroid hormone dependent mechanism. J Clin Invest. 1975;55:1295.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Thiebaud D, Jacquet AF, Burckhardt P. Fast and effective treatment of malignant hypercalcemia: combination of suppositories of calcitonin and a single infusion of 3-amino 1-hydroxypropylidene-1-bisphosphonate. Arch Intern Med. 1990;150:2125–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Bilezikian JP. Management of acute hypercalcemia. N Engl J Med. 1992;326:1196–203.PubMedCrossRefGoogle Scholar
  156. 156.
    Knochel JP. The pathophysiology and clinical characteristics of severe hypophosphatemia. Arch Intern Med. 1977;137:203–19.PubMedCrossRefGoogle Scholar
  157. 157.
    Fernandez Santana e Meneses J, Pons Leite H, Brunow de Carvalho W, Lopes Jr E. Hypophosphaatemia in critically ill children: prevalence and associated risk factors. Pediatr Crit Care Med. 2009;10:234–8.CrossRefGoogle Scholar
  158. 158.
    Keller V, Berger W. Prevention of hypophosphatemia by phosphate infusion during treatment of diabetic ketoacidosis and hyperosmolar coma. Diabetes. 1980;29:87.PubMedCrossRefGoogle Scholar
  159. 159.
    Mostellar ME, Tuttle EP. Effects of alkalosis on plasma concentration and urinary excretion of inorganic phosphate in man. J Clin Invest. 1964;43:138.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Aubier M, Murciano D, Lecocguic Y, et al. Effect of hypophosphatemia in diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med. 1985;313:420.PubMedCrossRefGoogle Scholar
  161. 161.
    Agusti A, Torres A, Estopa R, Agusti-Vidal A. Hypopphosphatemia as a cause of failed weaning: the importance of metabolic factors. Crit Care Med. 1984;12(2):142–3.PubMedCrossRefGoogle Scholar
  162. 162.
    O’Connor LR, Wheeler WS, Bethune JE. Effect of hypophosphatemia on myocardial performance in man. N Engl J Med. 1977;297:901.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Pediatrics, Pharmacology and Physiology, Department of Pediatrics, Critical Care and Pulmonary MedicineMedstar Georgetown University HospitalWashington, DCUSA
  2. 2.Nephrology and EndocrinologyPittsburghUSA

Personalised recommendations