From Computer Innovation to Human Integration: Current Trends and Challenges for Pervasive HealthTechnologies

  • Carsten RöckerEmail author
  • Martina Ziefle
  • Andreas Holzinger
Part of the Human–Computer Interaction Series book series (HCIS)


This chapter starts with an overview of the technical innovations and societal transformation processes we have seen in the last decades and as well as the consequences those changes have for the design of pervasive healthcare systems. Based on this theoretical foundation, emerging design requirements and research challenges are outlined, which are crucial to be addressed when developing future health technologies.


Pervasive health  Ambient assisted living E-Health Trends Research challenges Design requirements 


  1. 1.
    Adam, A. (2002). Exploring the gender question in critical information systems. Journal of Information Technology, 17, 59–67.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Akil, H., Martone, M. E., & Van Essen, D. C. (2011). Challenges and opportunities in mining neuroscience data. Science, 331(6018), 708–712.CrossRefGoogle Scholar
  3. 3.
    Alagöz, F., Calero Valdez, A., Wilkowska, W., Ziefle, M., Dorner, S., & Holzinger, A. (2010). From cloud computing to mobile internet, from user focus to culture and hedonism: The crucible of mobile health care and wellness applications. IEEE 5th International Conference on Pervasive Computing and Applications, 1, 38–45.Google Scholar
  4. 4.
    Alagöz, F., Ziefle, M., Wilkowska, W., Calero Valdez, A. (2011). Openness to accept medical technology—a cultural view. In H. Holzinger, K.-M. Simonic (Eds.), Human-Computer interaction: Information quality in eHealth (pp. 151–170) LNCS 7058. Berlin, Heidelberg: Springer.Google Scholar
  5. 5.
    Alhakami, A. S., & Slovic, P. (1994). A psychological-study of the inverse relationship between perceived risk and perceived benefit. Risk Analysis, 14, 1085–1096.CrossRefGoogle Scholar
  6. 6.
    Allen, F. W. (1987). Towards a holistic appreciation of risk: The challenges for communicators and policymakers. Science, Technology and Human Values, 12, 138–143.Google Scholar
  7. 7.
    Alnaniha, R., Ormandjievaa, O., & Radhakrishnana, T. (2014). A new methodology (CON-INFO) for context-based development of a mobile user interface in healthcare applications. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  8. 8.
    Anandarajan, M., Igbaria, M., & Anakwe, U. (2000). Technology acceptance in the banking industry: A perspective from a less developed country. Information Technology & People, 13(4), 298–312.CrossRefGoogle Scholar
  9. 9.
    Anandarajan, M., Igbaria, M., & Anakwe, U. (2002). IT acceptance in a less-developed country: A motivational factor perspective. International Journal of Information Management, 22(1), 47–65.CrossRefGoogle Scholar
  10. 10.
    Arenas-Gaitána, J., Ramírez-Correab, P., & Rondán-Cataluñaa, F. (2011). Cross-cultural analysis of the use and perceptions of web-based learning systems. Computers and Education, 57(2), 1762–1774.CrossRefGoogle Scholar
  11. 11.
    Arning, K., & Ziefle, M. (2009). Different perspectives on technology acceptance: The role of technology type and age. In A. Holzinger & K. Miesenberger (Eds.), Human-Computer interaction for eInclusion (pp. 20–41). Berlin, Heidelberg: Springer.Google Scholar
  12. 12.
    Arning, K., Gaul, S., Ziefle, M. (2010). Same same but different. How service contexts of Mobile technologies shape usage motives and barriers. In G. Leitner, M. Hitz, A. Holzinger (Eds.), HCI in work and learning, life and leisure. 6th Symposium of the WG HCIandUE of the Austrian Computer Society.Google Scholar
  13. 13.
    Arning, K., Kowalewski, S., & Ziefle, M. (2013). Health concerns Vs. mobile data needs: Conjoint measurement of preferences for mobile communication network scenarios. International Journal of Human and Ecological Risk Assessment. ISSN: 1080–7039. doi: 10.1080/10807039.2013.838127
  14. 14.
    Bell, G., Hey, T., & Szalay, A. (2009). Beyond the data deluge. Science, 323(5919), 1297–1298.CrossRefGoogle Scholar
  15. 15.
    Berger, J. T. (1998). Cultural discrimination in mechanisms for health decisions: A view from New York. Journal of Clinical Ethics, 9, 127–131.Google Scholar
  16. 16.
    Billings, A. G., & Moos, R. H. (1981). The role of coping re-sponses and social resources in attenuating the stress of life events. Journal of Behavioural Medicine, 4(2), 139–157.CrossRefGoogle Scholar
  17. 17.
    Böcker, M., & Schneider, M. (2014). E-Health applications for those in need: Making novel interaction technologies accessible. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  18. 18.
    Bongers, A. J., Smith, S., Donker, V., Pickrell, M., & Hall, R. (2014). Interactive infrastructures—physical rehabilitation modules for pervasive healthcare technology. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  19. 19.
    Busch, T. (1995). Gender differences in self-efficacy and attitudes toward computers. Journal of Educational Computing Research, 12, 147–158.CrossRefGoogle Scholar
  20. 20.
    Buxton, B., Hayward, V., Pearson, I., Kärkkäinen, L., Greiner, H., Dyson, E., et al. (2008). Big data: The next google. Interview by Duncan Graham-Rowe. Nature, 455(7209), 8.CrossRefGoogle Scholar
  21. 21.
    Campiniha-Bacote, J. (2002). The process of cultural competence in the delivery of health care services: A model of care. Journal of Transcultural Nursing, 13(3), 181–184.CrossRefGoogle Scholar
  22. 22.
    Caporusso, N., Trizio, M., & Perrone, G. (2014). Pervasive assistive technology for the deaf-blind—need, emergency and assistance through the sense of touch. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  23. 23.
    Choon, Y.-Y. (2005). Cross-Cultural issues in human-computer interaction. In W. Karwowski (Ed.), International Encyclopedia of Ergonomics and Human Factors (Vol. 1, pp. 1063–1069). London: Taylor & Francis.Google Scholar
  24. 24.
    D’Angelo, L. T., Kreutzer, J. F., Neuhaeuser, J., Reimer, S., & Lueth, T. C. (2014). Personal assistive devices for elderlies: Executing activities of daily living despite natural aging-related changes. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  25. 25.
    Dhar, V. (2013). Data science and prediction. Communication of the ACM, 56(12), 64–73.CrossRefGoogle Scholar
  26. 26.
    Durndell, A., & Zsolt, H. (2002). Computer self-efficacy, computer anxiety, attitudes towards the internet and reported experience with the internet, by gender, in an East European sample. Computers in Human Behavior, 18, 521–535.CrossRefGoogle Scholar
  27. 27.
    Ellis, D. R., & Allaire, J. C. (1999). Modeling computer interest in older adults: The role of age, education, computer knowledge and computer anxiety. Human Factors, 41, 345–364.CrossRefGoogle Scholar
  28. 28.
    Ericsson. (2011). More than 50 Billion connected devices. Ericsson, Stockholm, Sweden: White Paper.Google Scholar
  29. 29.
    Evans, D. (2011). The internet of things: How the next evolution of the internet Is changing everything. Cisco IBSG, San Jose, CA, USA: White Paper.Google Scholar
  30. 30.
    Feingold, A., & Mazella, R. (1998). Gender differences in body image are increasing. Psychological Science, 9, 190–195.CrossRefGoogle Scholar
  31. 31.
    Gaul, S., & Ziefle, M. (2009). Smart home technologies: Insights into generation-specific acceptance motives. In A. Holzinger & K. Miesenberger (Eds.), Human-Computer interaction for eInclusion (pp. 312–332). Berlin, Heidelberg: Springer.Google Scholar
  32. 32.
    Gefen, D., & Straub, D. (1999). Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Quarterly, 21, 389–400.CrossRefGoogle Scholar
  33. 33.
    Grönvall, E., & Lundberg, S. (2014). On challenges designing the home as a place for care. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  34. 34.
    Guo, B., Zhang, D., Wang, Z. (2011). Living with internet of things: The emergence of embedded intelligence. Proceedings of the International Conference on Cyber, Physical, and Social Computing (CPSCom, pp. 297–304). USA: IEEE Press.Google Scholar
  35. 35.
    Heidrich, F., Ziefle, M., Röcker, C., Borchers, J. (2011). Interacting with smart walls: A multi-dimensional analysis of input technologies for augmented environments. Proceedings of the ACM Augmented Human Conference (AH’11) (pp. 1–8).Google Scholar
  36. 36.
    Hey, T., Gannon, D., & Pinkelman, J. (2012). The future of data-intensive science. Computer, 45(5), 81–82.CrossRefGoogle Scholar
  37. 37.
    Himmel, S., Ziefle, M., Lidynia, C., Holzinger, A. (2013). Older users’ wish list for technology attributes. A comparison of household and medical technologies. In A. Cuzzocrea, C. Kittl, D.E. Simos, E. Weippl, L. Xu (Eds.), multidisciplinary research and practice for information systems. IFIP International Cross Domain Conference and Workshop on Availability, Reliability and Security (pp. 16–27). CD-ARES 2013, LNCS 8127 Heidelberg: Springer. ISBN: 978-3-642-40510-5.Google Scholar
  38. 38.
    Hofstede, G. (1980). Cultures consequences. Beverly Hills, CA: Sage.Google Scholar
  39. 39.
    Holzinger, A. (2011). Interacting with information: Challenges in human-computer interaction and information retrieval (HCI-IR). Proceedings of the IADIS Multi-Conference on Computer Science and Information Systems (MCCSIS), Interfaces and Human-Computer Interaction (pp. 13–17). Rome: IADIS.Google Scholar
  40. 40.
    Holzinger, A. (2012a). Biomedical informatics: Computational sciences meets life sciences. Norderstedt: BoD.Google Scholar
  41. 41.
    Holzinger, A. (2012). On knowledge discovery and interactive intelligent visualization of biomedical data: Challenges in human-computer interaction and biomedical informatics. In M. Helfert, C. Fancalanci, & J. Filipe (Eds.), Proceedings of the International Conference on Data Technologies and Applications DATA 2012 (pp. 5–16). Italy: Rome.Google Scholar
  42. 42.
    Holzinger, A. (2013). Human-Computer interaction and knowledge discovery (HCI-KDD): What is the benefit of bringing those two fields to work together? In A. Cuzzocrea, C. K., D. E. Simos, E. Weippl, L. Xu (Eds.), Multidisciplinary research and practice for information systems, LNCS 8127 (pp. 319–328). Heidelberg: Springer.Google Scholar
  43. 43.
    Holzinger, A., Ziefle, M., & Röcker, C. (2010). Human-computer interaction and usability engineering for elderly (HCI4AGING): Introduction to the special thematic session. In K. Miesenberger, et al. (Eds.), ICCHP 2010, Part II LNCS 6180 (pp. 556–559). Heidelberg: Springer.Google Scholar
  44. 44.
    Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz, A., & Hofmann-Wellenhof, R. (2013). Combining HCI, natural language processing, and knowledge discovery—Potential of IBM content analytics as an assistive technology in the biomedical domain. In A. Holzinger & G. Pasi (Eds.), Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data, LNCS 7947 (pp. 13–24). Heidelberg: Springer.Google Scholar
  45. 45.
    Inglehart, R., & Klingemann, H. D. (2000). Genes, culture, democracy, and happiness. In E. Diener & E. M. Suh (Eds.), Culture and subjective well-being (pp. 165–183). Cambridge: MIT Press.Google Scholar
  46. 46.
    Institute of Electrical and Electronics Engineers, IEEE (2013). Top Trends for 2012. Accessed 30 July 2013
  47. 47.
    Intel. (2009). Rise of the Embedded Internet. USA: Intel Corporation.Google Scholar
  48. 48.
    ITU. (2013). The world in 2013: ICT facts and figures. Telecommunication Development Bureau, International Telecommunication Union, Geneva, Switzerland: ICT Data and Statistics Division.Google Scholar
  49. 49.
    Iweins, C., Desmette, D., Yzerbyt, V., Stinglhamber, F. (2013). Ageism at work: The impact of intergenerational contact and organizational multi-age perspective. European Journal of Work and Organizational Psychology, (ahead-of-print) (pp. 1–16).Google Scholar
  50. 50.
    Jacobs, A., Duysburgh, P., Ongenae, F., Ackaert, A., Bleumers, L., & Verstichel, S. (2014). The innovation binder approach: A guide towards a social-technical balanced pervasive health system. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  51. 51.
    Jiménez García, J., Romero, N., Keyson, D., & Havinga, P. (2014). An integrated patient-centric approach for situated research on total hip replacement: ESTHER. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  52. 52.
    John, B. (2013). Patterns of ageism in different age groups. Journal of European Psychology Students, 4(1), 16–26.CrossRefGoogle Scholar
  53. 53.
    Kasugai, K., Ziefle, M., Röcker, C., Russell, P. (2010). Creating spatio-temporal contiguities between real and virtual rooms in an assistive living environment. In J. Bonner, M. Smyth, S. O’ Neill and O. Mival (Eds.), Proceedings of Create 10 Innovative Interactions (pp. 62–67). Loughborough: Elms Court.Google Scholar
  54. 54.
    Kedia, B., & Bhagat, R. (1988). Cultural constraints on transfer of technology across nations. Academy of Management Review, 13(4), 471–559.Google Scholar
  55. 55.
    Keogh, E., & Mansoor, L. (2001). Investigating the effects of anxiety, sensitivity and coping on the perception of cold pressor pain in healthy women. European Journal of Pain, 5, 11–22.CrossRefGoogle Scholar
  56. 56.
    Kleinberger, T., Becker, M., Ras, E., Holzinger, A., & Müller, P. (2007). Ambient intelligence in assisted living: Enable elderly people to handle future interfaces. Universal Access in HCI, LNCS 4555, 103–112.Google Scholar
  57. 57.
    Klessig, J. (1992). Cross-cultural medicine a decade later. The effect of values and culture on life-support decisions. The Western Journal of Medicine, 157, 316–322.Google Scholar
  58. 58.
    Kreie, J., & Cronau, T. P. (1998). How men and women view ethics. Communications of the Association for Computing Machinery, 41(9), 70–76.CrossRefGoogle Scholar
  59. 59.
    Lahlou, S. (2008). Identity, social status, and face-keeping in the digital society. Journal of Social Science Information, 47(3), 299–330.CrossRefGoogle Scholar
  60. 60.
    Lahlou, S., Langheinrich, M., & Röcker, C. (2005). Privacy and trust issues with invisible computers. Communications of the Association for Computing Machinery, 48(3), 59–60.CrossRefGoogle Scholar
  61. 61.
    Leidner, D., & Kayworth, T. (2006). A review of culture in information systems research: Toward a theory of information technology culture conflict. MIS Quarterly, 30, 2.Google Scholar
  62. 62.
    Leonhardt, S. (2006). Personal healthcare devices. In S. Mekherjee, et al. (Eds.), Malware: Hardware technology drivers of ambient intelligence (pp. 349–370). Dordrecht: Springer.Google Scholar
  63. 63.
    Lightbody, G., Galway, L., & McCullagh, P. (2014). The brain computer interface: Barriers to becoming pervasive. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  64. 64.
    Maguire, M., & Osman, Z. (2003). Designing for older and inexperienced mobile phone users. In C. Stephanidis (Ed.), Universal access in HCI: Inclusive design in the information society (pp. 439–443). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  65. 65.
    Malinowski, M. (1996). Capitation, advances in medical technology, and the advent of a new Era in medical ethics. American Journal of Law and Medicine, 22, 331–360.Google Scholar
  66. 66.
    Meeker, M., Wu, L. (2013). Internet Trends. Accessed: 1 August 2013
  67. 67.
    Meyer, S., & Mollenkopf, H. (2003). Home technology, smart homes, and the aging user. In K. W. Schaie, H.-W. Wahl, H. Mollenkopf, & F. Oswald (Eds.), Aging independently: Living arrangements and mobility. New York: Springer.Google Scholar
  68. 68.
    Miller, S. M., Brody, D. S., & Summerton, J. (1988). Styles of coping with threat: Implications for health. Journal of Personality and Social Psychology, 54, 142–148.CrossRefGoogle Scholar
  69. 69.
    Mynatt, E. D., & Rogers, W. A. (2001). Developing technology to support the functional independence of older adults. Ageing International, 27, 24–41.CrossRefGoogle Scholar
  70. 70.
    Necheles, T. (1982). Standards of medical care: How does an innovative medical procedure become accepted. The Journal of Law, Medicine and Ethics, 10, 15–18.CrossRefGoogle Scholar
  71. 71.
    Nelson, T. (Ed.). (2004). Ageism: Stereotyping and prejudice against older persons. Cambridge: The MIT Press.Google Scholar
  72. 72.
    Pai, F.-Y., & Huang, K. (2011). Applying the technology acceptance model to the introduction of healthcare information systems. Technological Forecasting and Social Change, 78(4), 650–660.CrossRefGoogle Scholar
  73. 73.
    Palmore, E. (2001). The ageism survey first findings. The Gerontologist, 41(5), 572–575.CrossRefGoogle Scholar
  74. 74.
    Polanyi, M. (1974). Personal knowledge: Towards a post-critical philosophy. Nature Publishing Group.Google Scholar
  75. 75.
    Popper, K. R. (1996). Alles Leben ist Problemlösen. München, Zürich: Piper.Google Scholar
  76. 76.
    Renn, O., & Swaton, E. (1984). Psychological and sociological approaches to study risk perception. Environment International, 10, 557–575.CrossRefGoogle Scholar
  77. 77.
    Renn, O., Burns, W. J., Kasperson, J. X., Kasperson, R. E., & Slovic, P. (1992). The social amplification of risk: Theoretical foundations and empirical applications. Journal of Social Issues, 48, 137–160.CrossRefGoogle Scholar
  78. 78.
    Röcker, C. (2009a). Design requirements for future and emerging business technologies: An empirical cross-cultural study analyzing the requirements for ambient intelligence applications in work environments. Taunusstein: Dr. Driesen.Google Scholar
  79. 79.
    Röcker, C. (2009b). Ambient intelligence in the production and retail sector: Emerging opportunities and potential pitfalls. Proceedings of the International Conference on Innovation, Management and Technology (ICIMT’09), May 27–29, 2009, Tokyo, Japan, 1393–1404.Google Scholar
  80. 80.
    Röcker, C. (2010a). Services and applications for smart office environments—a survey of state-of-the-art usage scenarios. Proceedings of the International Conference on Computer and Information Technology (ICCIT’10), January 27–29, Cape Town, South, Africa, 387–403.Google Scholar
  81. 81.
    Röcker, C. (2010b). Chances and challenges of intelligent technologies in the production and retail sector. International Journal of Business and Economic Sciences, 2(3), 150–161.Google Scholar
  82. 82.
    Röcker, C. (2010c). Information privacy in smart office environments: A cross-cultural study analyzing the willingness of users to share context information. In D. Tanier, O. Gervasi, V. Murgante, E. Pardede, & B. O. Apduhan (Eds.), Proceedings of the International Conference on Computational Science and Applications (ICCSA’10), March 23–26, Fukuoka, Japan, LNCS (Vol. 6019, pp. 93–106)., Springer-Verlag Germany: Heidelberg.Google Scholar
  83. 83.
    Röcker, C. (2011). Smart medical services: A discussion of state-of-the-art approaches. In: S. Thatcher (Ed.): Proceedings of the International IEEE Conference on Machine Learning and Computing (ICMLC’11), Vol. 1, 334–338.Google Scholar
  84. 84.
    Röcker, C., & Etter, R. (2007). Social radio—a music-based approach to emotional awareness mediation. Proceedings of the International Conferences on Intelligent User Interfaces (IUI’07) (286–289) . New York, USA: ACM Press.Google Scholar
  85. 85.
    Röcker, C., Feith, A. (2009). Revisiting privacy in smart spaces: Social and architectural aspects of privacy in technology-enhanced environments. Proceedings of the International Symposium on Computing, Communication and Control (ISCCC’09), October 9–11, 2009, Singapore, 201–205.Google Scholar
  86. 86.
    Röcker, C., Janse, M., Portolan, N., Streitz, N.A. (2005). User requirements for intelligent home environments: A scenario-driven approach and empirical cross-cultural study. Proceedings of the International Conference on Smart Objects and Ambient Intelligence (sOc-EUSAI’05), October 12–14, Grenoble, France, ACM International Conference Proceeding Series, 121, 111–116.Google Scholar
  87. 87.
    Röcker, C., Ziefle, M., Holzinger, A. (2011). Social inclusion in AAL environments: Home automation and convenience services for elderly users. Proceedings of the International Conference on Artificial Intelligence (ICAI’11), (Vol. 1, pp. 55–59) July 18–20, Las Vegas, NV, USA.Google Scholar
  88. 88.
    Rodger, J. A., & Pendharkar, P. C. (2004). A field study of the impact of gender and user’s technical experience on the performance of voice-activated medical tracking application. International Journal of Human-Computer Studies, 60, 529–44.CrossRefGoogle Scholar
  89. 89.
    Rogers, Y. (2009). The changing face of human-computer interaction in the age of ubiquitous computing. In A. Holzinger and K. Miesenberger (eds.), Human-Computer-Interaction and usability for e-Inclusion. LNCS 5889 (pp. 1–19). Berlin: Springer.Google Scholar
  90. 90.
    Schwarzer, R. (1994). Optimism, vulnerability, and self- beliefs as health-related cognitions: A systematic overview. Psychology & Health, 9(3), 161–180.CrossRefGoogle Scholar
  91. 91.
    Searight, H., & Gafford, J. (2005). Cultural diversity at the end of life: Issues and guidelines for family physicians. American Family Physician, 71(3), 515–525.Google Scholar
  92. 92.
    Seo, K., Kim, J., Ryu, H., & Jang, S. (2014). RehabMaster: A Pervasive rehabilitation platform for stroke patients and their caregivers. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  93. 93.
    Sharma, R., & Thomas, C. J. (2013). Ageism: problems and prospects. New Delhi: Akansha Publishing.Google Scholar
  94. 94.
    Shiode, N. (2004). When space shrinks—digital communities and ubiquitous society: Digitally united? A case study on the penetration of wireless and ubiquitous information technologies in Japan. Proceedings of the Winter International Symposium on Information and Communication Technologies (WISICT’04), 1–6.Google Scholar
  95. 95.
    Smith, R. (2013). 5 Cloud Computing Trends For 2013. Accessed 30 July 2013
  96. 96.
    Srite, M., & Karahanna, E. (2006). The role of espoused national cultural values in technology acceptance. MIS Quarterly, 30, 3.Google Scholar
  97. 97.
    Stokes, E. (2014). The ongoing development of a multimedia gaming module to aid speech, language and communication. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive Health - State-of-the-Art and Beyond. London: Springer.Google Scholar
  98. 98.
    Straub, D., Keil, M., & Brenner, W. (1997). Testing the technology acceptance model across cultures: A three country study. Information & Management, 33(1), 1–11.CrossRefGoogle Scholar
  99. 99.
    Straub, D., Loch, K., & Hill, C. (2002). Transfer of information technology to the Arab world: A test of Cultural influence modeling. In M. Dadashuadeh (Ed.), Information Technology Management in Developing Countries (pp. 92–151). Hershey: IRM Press.Google Scholar
  100. 100.
    Streitz, N. A., Magerkurth, C., Prante, T., & Röcker, C. (2005). From information design to experience design: Smart artefacts and the disappearing computer. ACM Interactions, Special Issue on Ambient Intelligence—New Visions of Human-Computer Interaction, 12(4), 21–25.Google Scholar
  101. 101.
    Tedre, M., Sutinen, E., Kähkönen, E., & Kommers, P. (2006). Ethnocomputing: ICT in cultural and social context. Communications of the ACM, 49(1), 126–130.CrossRefGoogle Scholar
  102. 102.
    Teo, T., & Su Luan, W. (2008). A cross-cultural examination of the intention to use technology between Singaporean and Malaysian pre-service teachers: an application of the TAM. Educational Technology and Society, 11(4), 265–280.Google Scholar
  103. 103.
    Turner, K. J. (2014). Managing telehealth and telecare. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and beyond. London: Springer.Google Scholar
  104. 104.
    Vaughan, E. (1993). Individual and cultural differences in adaptation to environmental risks. American Psychologist, 48, 673–80.CrossRefGoogle Scholar
  105. 105.
    Venkatesh, V., & Morris, M. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 24, 115–139.CrossRefGoogle Scholar
  106. 106.
    Vlek, C., & Stallen, P. (1980). Rational and personal aspects of risk. Acta Psychologica, 45, 273–300.CrossRefGoogle Scholar
  107. 107.
    Waltisberg, D., Arnrich, B., & Tröster, G. (2014). Sleep quality monitoring with the smart bed. In A. Holzinger, M. Ziefle, & C. Röcker (Eds.), Pervasive health—state-of-the-art and Beyond. London: Springer.Google Scholar
  108. 108.
    Webster, A. (2002). Innovative health technologies and the social: Redefining health, medicine and the body. Current Sociology, 50, 443–457.CrossRefGoogle Scholar
  109. 109.
    Wilkowska, W., Ziefle, M. (2011). User diversity as a challenge for the integration of medical technology into future home environments. In M. Ziefle, C. Röcker (Eds.), Human-Centred design of eHealth technologies. Concepts, methods and applications (pp. 95–126). Hershey: IGI Global.Google Scholar
  110. 110.
    Wilkowska, W., & Ziefle, M. (2012). Privacy and data security in e-health: Requirements from users’ perspective. Health Informatics Journal, 18(3), 191–201.CrossRefGoogle Scholar
  111. 111.
    Wilkowska, W., Gaul, S., & Ziefle, M. (2010). A small but significant difference—the role of gender on the acceptance of medical assistive technologies. In G. Leitner, M. Hitz, & A. Holzinger (Eds.), HCI in work and learning, life and leisure USAB 2010, LNCS 6389 (pp. 82–100). Berlin, Heidelberg: Springer.Google Scholar
  112. 112.
    Wilkowska, W., Alagöz, F., & Ziefle, M. (2012). How age and country of origin impact the readiness to adopt e-Health technologies: An intercultural comparison. Work: A Journal of Prevention. Assessment and Rehabilitation, 41, 2072–2080.Google Scholar
  113. 113.
    Wilson, M. (2002). Making nursing visible? Gender, technology and the care plan as script. Information Technology and People, 15(2), 139–158.CrossRefGoogle Scholar
  114. 114.
    Ziefle, M. (2002). The influence of user expertise and phone complexity on performance, ease of use and learnability of different mobile phones. Behaviour and Information Technology, 21(5), 303–311.CrossRefGoogle Scholar
  115. 115.
    Ziefle, M., & Bay, S. (2005). How older adults meet complexity: Aging effects on the usability of different mobile phones. Behaviour and Information Technology, 24(5), 375–389.CrossRefGoogle Scholar
  116. 116.
    Ziefle, M. Jakobs, E.-M. (2010). New challenges in human computer interaction: Strategic directions and interdisciplinary trends. 4th International Conference on Competitive Manufacturing Technologies, South Africa: University of Stellenbosch, 389–398.Google Scholar
  117. 117.
    Ziefle, M., Röcker, C. (2010). Acceptance of pervasive healthcare systems: A comparison of different implementation concepts. In Proceedings of the 4th International ICST Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth’10), Munich, Germany, March 22–25, CD-ROM.Google Scholar
  118. 118.
    Ziefle, M., & Röcker, C. (2011). Human-Centered design of e-health technologies: Concepts, methods and applications. Niagara Falls: IGI Publishing.Google Scholar
  119. 119.
    Ziefle, M., Schaar, A.K. (2011). Gender Differences in Acceptance and Attitudes towards an Invasive Medical Stent. Electronic Journal of Health Informatics, 6, 1–18.Google Scholar
  120. 120.
    Ziefle, M., Schaar, A.K. (2014). Technology acceptance by patients: Empowerment and stigma. In J. V. Hoof, G. Demiris, E. Wouters (Eds.), Handbook of smart homes, health care and well-being. New York: Springer.Google Scholar
  121. 121.
    Ziefle, M., Röcker, C., Kasugai, K., Klack, L., Jakobs, E.-M., Schmitz-Rode, T., et al. (2009). eHealth—enhancing mobility with aging. In M. Tscheligi, B. de Ruyter, J. Soldatos, A. Meschtscherjakov, C. Buiza, W. Reitberger, N. Streitz, & T. Mirlacher (Eds.), Roots for the future of ambient intelligence, adjunct Proceedings of the Third European Conference on Ambient Intelligence (Am I’09), November 18–21 (pp. 25–28). Salzburg: Austria.Google Scholar
  122. 122.
    Ziefle, M., Röcker, C., Wilkowska, W., Kasugai, K., Klack, L., Möllering, C., et al. (2011a). A multi-disciplinary approach to ambient assisted living. In C. Röcker & M. Ziefle (Eds.), E-Health, Assistive technologies and applications for assisted living: Challenges and solutions (pp. 76–93). Niagara Falls: IGI Publishing.Google Scholar
  123. 123.
    Ziefle, M., Röcker, C., Holzinger A. (2011b). Medical technology in smart homes: Exploring the user’s perspective on privacy, intimacy and trust. The 3rd IEEE International Workshop on Security Aspects of Process and Services Engineering (SAPSE’11). 35th Annual IEEE Computer Software and Applications Conference, July 18–22, 2011, Munich, Germany, pp. 410–415, ISBN: 978-1-4577-0980-7 DOI 10.1109/COMPSACW.2011.75.Google Scholar
  124. 124.
    Zimmer, Z., & Chappell, N. L. (1999). Receptivity to new technology among older adults. Disability and Rehabilitation, 21, 222–230.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Carsten Röcker
    • 1
    Email author
  • Martina Ziefle
    • 1
  • Andreas Holzinger
    • 2
  1. 1.Human-Computer Interaction CenterRWTH Aachen UniversityAachenGermany
  2. 2.Institute for Medical InformaticsMedical University GrazGrazAustria

Personalised recommendations