Application of Principal Component Analysis to Fault Diagnosis

Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

Principal component analysis (PCA) is a basic method of multivariate analysis (MVA) and plays, both in the research and application domains, an important role.

Keywords

Covariance Stripper 

References

  1. 1.
    Jolliffe I (1986) Principal component analysis. Springer, New YorkGoogle Scholar
  2. 2.
    MacGregor JF, Kourti T (1995) Statistical process control of multivariate processes. Contr Eng Pract 3:403–414CrossRefGoogle Scholar
  3. 3.
    Chiang LH, Russell EL, Braatz RD (2001) Fault detection and diagnosis in industrial systems. Springer, LondonGoogle Scholar
  4. 4.
    Qin SJ (2003) Statistical process monitoring: basics and beyond. J Chemometr 17:480–502CrossRefGoogle Scholar
  5. 5.
    Jackson JE, Mudholkar GS (1979) Control procedures for residuals associated with principal component analysis. Technometrics 21:341–349CrossRefMATHGoogle Scholar
  6. 6.
    Valle S, Li W, Qin SJ (1999) Selection of the number of principal components. Ind Eng Chem Res 38:4389–4401CrossRefGoogle Scholar
  7. 7.
    Li W, Yue HH, Valle-Cervantes S, Qin SJ (2000) Recursive PCA for adaptive process monitoring. J Process Control 10:471–486CrossRefGoogle Scholar
  8. 8.
    Wang X, Kruger U, Irwin GW (2005) Process monitoring approach using fast moving window PCA. Ind Eng Chem Res 44:5691–5702CrossRefGoogle Scholar
  9. 9.
    Liu X, Kruger U, Lttler T, Xie L, Wang S (2009) Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometr Intell Lab Syst 96:132–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Institute for Automatic Control and Complex Systems (AKS)University of Duisburg-EssenDuisburgGermany

Personalised recommendations