Skip to main content

Bioengineered Tissues for Tracheal Reconstruction

  • Chapter
  • First Online:
  • 1343 Accesses

Part of the book series: Difficult Decisions in Surgery: An Evidence-Based Approach ((DDSURGERY,volume 1))

Abstract

Extended (>6 cm) reconstruction of the trachea is an unmet clinical need, and all conventional surgical approaches thus far have failed to provide any definitive solutions to this common problem. Tissue engineering, including cell-seeded scaffolds using a bioreactor, has recently became a promising therapeutic option. Despite its successful use in initial clinical compassionate cases, an understanding of the underlying mechanisms of in situ regeneration remain unclear and routine clinical applications are still far away. Early outcomes suggest that specific clinical scenarios require different approaches and additional strategies aside from tissue engineering might be necessary. There is no evidence-based medicine available for this emerging field, hence we provide an overview of hitherto investigated concepts and applied procedures.

The authors declare no competing financial interests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grillo HC. Tracheal replacement: a critical review. Ann Thorac Surg. 2002;73:1995–2004.

    Article  PubMed  Google Scholar 

  2. Macchiarini P. Primary tracheal tumours. Lancet Oncol. 2006;7:83–91.

    Article  PubMed  Google Scholar 

  3. Nakahira M, Nakatani H, Takeuchi S, Higashiyama K, Fukushima K. Safe reconstruction of a large cervico-mediastinal tracheal defect with a pectoralis major myocutaneous flap and free costal cartilage grafts. Auris Nasus Larynx. 2006;33:203–6.

    Article  PubMed  Google Scholar 

  4. Rose K, Sesterhenn K, Wustrow F. Tracheal allotransplantation in man. Lancet. 1979;1:433.

    Article  CAS  PubMed  Google Scholar 

  5. Lenot B, Macchiarini P, Dulmet E, Weiss M, Dartevelle P. Tracheal allograft replacement. An unsuccessful method. Eur J Cardiothorac Surg. 1993;7:648–52.

    Article  CAS  PubMed  Google Scholar 

  6. Macchiarini P, Lenot B, De Montpreville V, Dulmet E, Mazmanian GM, Fattal M, et al. Heterotopic pig model for direct revascularization and venous drainage of tracheal allografts. Paris-Sud University Lung Transplantation Group. J Thorac Cardiovasc Surg. 1994;108:1066–75.

    CAS  PubMed  Google Scholar 

  7. Levashov YN, Yablonsky PK, Cherny SM, Orlov SV, Shafirovsky BB, Kuznetzov IM. One-stage allotransplantation of thoracic segment of the trachea in a patient with idiopathic fibrosing mediastinitis and marked tracheal stenosis. Eur J Cardiothorac Surg. 1993;7:383–6.

    Article  PubMed  Google Scholar 

  8. Delaere PR, Liu Z, Sciot R, Welvaart W. The role of immunosuppression in the long-term survival of tracheal allografts. Arch Otolaryngol Neck Surg. 1996;122:1201–8.

    Article  CAS  Google Scholar 

  9. Shaari CM, Farber D, Brandwein MS, Gannon P, Urken ML. Characterizing the antigenic profile of the human trachea: implications for tracheal transplantation. Head Neck. 1998;20:522–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kunachak S, Kulapaditharom B, Vajaradul Y, Rochanawutanon M. Cryopreserved, irradiated tracheal homograft transplantation for laryngotracheal reconstruction in human beings. Otolaryngol Head Neck Surg. 2000;122:911–6.

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs JP, Quintessenza JA, Andrews T, Burke RP, Spektor Z, Delius RE, et al. Tracheal allograft reconstruction: the total North American and worldwide pediatric experiences. Ann Thorac Surg. 1999;68:1043–51.

    Article  CAS  PubMed  Google Scholar 

  12. Hisamatsu C, Maeda K, Tanaka H, Okita Y. Transplantation of the cryopreserved tracheal allograft in growing rabbits: effect of immunosuppressant. Pediatr Surg Int. 2006;22:881–5.

    Article  PubMed  Google Scholar 

  13. Seguin A, Radu D, Holder-Espinasse M, Bruneval P, Fialaire-Legendre A, Duterque-Coquillaud M, et al. Tracheal replacement with cryopreserved, decellularized, or glutaraldehyde-treated aortic allografts. Ann Thorac Surg. 2009;87:861–7.

    Article  PubMed  Google Scholar 

  14. Elliott MJ, Haw MP, Jacobs JP, Bailey CM, Evans JN, Herberhold C. Tracheal reconstruction in children using cadaveric homograft trachea. Eur J Cardiothorac Surg. 1996;10:707–12.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Nakamura T, Sekine T, Matsumoto K, Ueda H, Yoshitani M, et al. New type of tracheal bioartificial organ treated with detergent: maintaining cartilage viability is necessary for successful immunosuppressant free allotransplantation. ASAIO J. 2002;48:21–5.

    Article  PubMed  Google Scholar 

  16. Yokomise H, Inui K, Wada H, Goh T, Yagi K, Hitomi S, et al. High-dose irradiation prevents rejection of canine tracheal allografts. J Thorac Cardiovasc Surg. 1994;107:1391–7.

    CAS  PubMed  Google Scholar 

  17. Fonkalsrud EW, Martelle RR, Maloney JV. Surgical treatment of tracheal agenesis. J Thorac Cardiovasc Surg. 1963;45:520–5.

    CAS  PubMed  Google Scholar 

  18. Fonkalsrud EW, Sumida S. Tracheal replacement with autologous esophagus for tracheal stricture. Arch Surg. 1971;102:139–42.

    Article  CAS  PubMed  Google Scholar 

  19. Wurtz A, Porte H, Conti M, Dusson C, Desbordes J, Copin MC, et al. Surgical technique and results of tracheal and carinal replacement with aortic allografts for salivary gland-type carcinoma. J Thorac Cardiovasc Surg. 2010;140:387–93.e2.

    Article  PubMed  Google Scholar 

  20. Wurtz A, Porte H, Conti M, Desbordes J, Copin MC, Azorin J, et al. Tracheal replacement with aortic allografts. N Engl J Med. 2006;355:1938–40.

    Article  CAS  PubMed  Google Scholar 

  21. Wurtz A, Hysi I, Kipnis E, Zawadzki C, Hubert T, Jashari R, et al. Tracheal reconstruction with a composite graft: fascial flap-wrapped allogenic aorta with external cartilage-ring support. Interact Cardiovasc Thorac Surg. 2013;16:37–43.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fabre D, Kolb F, Fadel E, Mercier O, Mussot S, Le Chevalier T, et al. Successful tracheal replacement in humans using autologous tissues: an 8-year experience. Ann Thorac Surg. 2013;96:1146–55.

    Article  PubMed  Google Scholar 

  23. Haag JC, Jungebluth P, Macchiarini P. Tracheal replacement for primary tracheal cancer. Curr Opin Otolaryngol Head Neck Surg. 2013;21:171–7.

    Article  PubMed  Google Scholar 

  24. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.

    Article  PubMed  Google Scholar 

  25. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329:538–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  CAS  PubMed  Google Scholar 

  27. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006;114:I132–7.

    Article  PubMed  Google Scholar 

  28. Olausson M, Patil PB, Kuna VK, Chougule P, Hernandez N, Methe K, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet. 2012;6736:1–8.

    Google Scholar 

  29. Go T, Jungebluth P, Baiguero S, Asnaghi A, Martorell J, Ostertag H, et al. Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. J Thorac Cardiovasc Surg. 2010;139:437–43.

    Article  CAS  PubMed  Google Scholar 

  30. Jungebluth P, Haag JC, Lim ML, Lemon G, Sjöqvist S, Gustafsson Y, et al. Verification of cell viability in bioengineered tissues and organs before clinical transplantation. Biomaterials. 2013;34(16):4057–67.

    Article  CAS  PubMed  Google Scholar 

  31. Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, et al. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest. 2013;123(11):4950–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Coraux C, Nawrocki-Raby B, Hinnrasky J, Kileztky C, Gaillard D, Dani C, et al. Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol. 2005;32:87–92.

    Article  CAS  PubMed  Google Scholar 

  33. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023–30.

    Article  PubMed  Google Scholar 

  34. Jungebluth P, Alici E, Baiguera S, Le Blanc K, Blomberg P, Bozóky B, et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet. 2011;378:1997–2004.

    Article  CAS  PubMed  Google Scholar 

  35. Kokubun K, Pankajakshan D, Kim MJ, Agrawal DK. Differentiation of porcine mesenchymal stem cells into epithelial cells as a potential therapeutic application to facilitate epithelial regeneration. J Tissue Eng Regen Med. 2013. doi: 10.1002/term.1758 (in press); Epub ahead of print.

  36. Alves da Silva ML, Costa-Pinto AR, Martins A, Correlo VM, Sol P, Bhattacharya M, et al. Conditioned medium as a strategy for human stem cells chondrogenic differentiation. J Tissue Eng Regen Med. 2013. doi: 10.1002/term.1812 (in press); Epub ahead of print.

  37. Macchiarini P, Walles T, Biancosino C, Mertsching H. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg. 2004;128:638–41.

    Article  PubMed  Google Scholar 

  38. Walles T, Giere B, Hofmann M, Schanz J, Hofmann F, Mertsching H, et al. Experimental generation of a tissue-engineered functional and vascularized trachea. J Thorac Cardiovasc Surg. 2004;128:900–6.

    Article  PubMed  Google Scholar 

  39. Berg M, Ejnell H, Kovács A, Nayakawde N, Patil PB, Joshi M, et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: a case report. Tissue Eng Part A. 2014;20(1-2):389–97.

    Article  PubMed  Google Scholar 

  40. Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380:994–1000.

    Article  PubMed  Google Scholar 

  41. Delaere P, Vranckx J, Verleden G, De Leyn P, Van Raemdonck D. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med. 2010;362:138–45.

    Article  CAS  PubMed  Google Scholar 

  42. Delaere PR, Vranckx JJ, Meulemans J, Vander Poorten V, Segers K, Van Raemdonck D, et al. Learning curve in tracheal allotransplantation. Am J Transplant. 2012;12:2538–45.

    Article  CAS  PubMed  Google Scholar 

  43. Seguin A, Baccari S, Holder-Espinasse M, Bruneval P, Carpentier A, Taylor DA, et al. Tracheal regeneration: evidence of bone marrow mesenchymal stem cell involvement. J Thorac Cardiovasc Surg. 2013;145(5):1297–1304.e2.

    Article  PubMed  Google Scholar 

  44. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.

    Article  CAS  PubMed  Google Scholar 

  45. Mailleux AA, Kelly R, Veltmaat JM, De Langhe SP, Zaffran S, Thiery JP, et al. Fgf10 expression identifies parabronchial smooth muscle cell progenitors and is required for their entry into the smooth muscle cell lineage. Development. 2005;132:2157–66.

    Article  CAS  PubMed  Google Scholar 

  46. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  47. Kajstura J, Rota M, Hall SR, Hosoda T, D’Amario D, Sanada F, et al. Evidence for human lung stem cells. N Engl J Med. 2011;364:1795–806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, 9913, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383:238–44.

    Article  PubMed  Google Scholar 

  49. Mittag F, Falkenberg EM, Janczyk A, Götze M, Felka T, Aicher WK, et al. Laminin-5 and type I collagen promote adhesion and osteogenic differentiation of animal serum-free expanded human mesenchymal stromal cells. Orthop Rev (Pavia). 2012;4:e36.

    Article  Google Scholar 

  50. Piterina AV, Cloonan AJ, Meaney CL, Davis LM, Callanan A, Walsh MT, et al. ECM-based materials in cardiovascular applications: inherent healing potential and augmentation of native regenerative processes. Int J Mol Sci. 2009;10:4375–417.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Jungebluth P, Macchiarini P. Airway transplantation. Thorac Surg Clin. 2014;2(12):975–82.

    Google Scholar 

  52. Omori K, Tada Y, Suzuki T, Nomoto Y, Matsuzuka T, Kobayashi K, et al. Clinical application of in situ tissue engineering using a scaffolding technique for reconstruction of the larynx and trachea. Ann Otol Rhinol Laryngol. 2008;117:673–8.

    PubMed  Google Scholar 

  53. Weiss DJ. Current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  54. Asnaghi MA, Jungebluth P, Raimondi MT, Dickinson SC, Rees LEN, Go T, et al. A double-chamber rotating bioreactor for the development of tissue-engineered hollow organs: from concept to clinical trial. Biomaterials. 2009;30:5260–9.

    Article  CAS  PubMed  Google Scholar 

  55. Bader A, Macchiarini P. Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach. J Cell Mol Med. 2010;14:1877–89.

    Article  CAS  PubMed  Google Scholar 

  56. Del Gaudio C, Baiguera S, Boieri M, Mazzanti B, Ribatti D, Bianco A, et al. Induction of angiogenesis using VEGF releasing genipin-crosslinked electrospun gelatin mats. Biomaterials. 2013;34:7754–65.

    Article  PubMed  Google Scholar 

  57. Lemon G, Gustafsson Y, Haag JC, Lim ML, Sjöqvist S, Ajalloueian F, et al. Modelling biological cell attachment and growth on adherent surfaces. J Math Biol. 2014;68(4):785–813.

    Article  PubMed  Google Scholar 

  58. Brines M, Cerami A. Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med. 2008;264:405–32.

    Article  CAS  PubMed  Google Scholar 

  59. Ohno S, Hirano S, Kanemaru S, Mizuta M, Ishikawa S, Tateya I, et al. Role of circulating MSCs in vocal fold wound healing. Laryngoscope. 2012;122:2503–10.

    Article  PubMed  Google Scholar 

  60. Mansilla E, Marín GH, Drago H, Sturla F, Salas E, Gardiner C, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc. 2006;38:967–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Macchiarini MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Jungebluth, P., Macchiarini, P. (2014). Bioengineered Tissues for Tracheal Reconstruction. In: Ferguson, M. (eds) Difficult Decisions in Thoracic Surgery. Difficult Decisions in Surgery: An Evidence-Based Approach, vol 1. Springer, London. https://doi.org/10.1007/978-1-4471-6404-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6404-3_43

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6403-6

  • Online ISBN: 978-1-4471-6404-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics