Skip to main content

Syndromic Congenital Heart Diseases

  • Chapter
  • First Online:
Comprehensive Approach to Adult Congenital Heart Disease

Abstract

Epidemiological studies have revealed that nearly 30 % of congenital heart diseases (CHD) are associated with extracardiac anomalies. Understanding of the extracardiac features of these syndromes may assist with correct diagnosis of the cardiac anomalies.

With the advent of human molecular genetics, significant progress has been made in identifying the underlying genetic causes of many syndromic congenital heart diseases. Studies have shown that these syndromic disorders are either caused by chromosomal anomalies or by point mutations, deletions, or insertions in key transcription factors or developmental genes. In this chapter, we will review the molecular genetics of major syndromic cardiovascular diseases including velocardiofacial, Noonan-Leopard, CHAR, Turner, Marfan, Lowy’s-Dietz, and Williams syndromes. Knowledge about genotype-phenotype correlations are evolving and at this point only limited information can be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eskedal L, et al. A population-based study of extra-cardiac anomalies in children with congenital cardiac malformations. Cardiol Young. 2004;14:600–7.

    Article  PubMed  Google Scholar 

  2. Marino B, Digilio MC. Congenital heart disease and genetic syndromes: specific correlation between cardiac phenotype and genotype. Cardiovasc Pathol. 2000;9:303–15.

    Article  CAS  PubMed  Google Scholar 

  3. Clementi M, et al. Apparent CHARGE association and chromosome anomaly: chance or contiguous gene syndrome. Am J Med Genet. 1991;41:246–50.

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 1999;126:1269–80.

    CAS  PubMed  Google Scholar 

  5. Atkins L, Bartsocas CS. Down’s syndrome associated with two Robertsonian translocations, 45, XX,-15,-21, + t(15q21q) and 46, XX,-21, + t(21q21q). J Med Genet. 1974;11:306–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tandon R, Edwards JE. Cardiac malformations associated with Down’s syndrome. Circulation. 1973;47:1349–55.

    Article  CAS  PubMed  Google Scholar 

  7. Schott JJ, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281:108–11.

    Article  CAS  PubMed  Google Scholar 

  8. Laing CR, Harper WH. Rubinstein-Taybi syndrome: broad thumbs and toes, facial abnormalities and mental retardation. Ariz Med. 1967;24:536–40.

    CAS  PubMed  Google Scholar 

  9. Park SC, Needles CF, Dimich I, Sussman L. Congenital heart disease in an infant with the Smith-Lemli-Opitz syndrome. J Pediatr. 1968;73:896–902.

    Article  CAS  PubMed  Google Scholar 

  10. Antonarakis SE, Adelsberger PA, Petersen MB, Binkert F, Schinzel AA. Analysis of DNA polymorphisms suggests that most de novo dup(21q) chromosomes in patients with Down syndrome are isochromosomes and not translocations. Am J Hum Genet. 1990;47:968–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Robinow M, Shaw A. The McKusick-Kaufman syndrome: recessively inherited vaginal atresia, hydrometrocolpos, uterovaginal duplications, anorectal anomalies, postaxial polydactyly, and congenital heart disease. J Pediatr. 1979;94:776–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hook EB, Cross PK, Schreinemachers DM. Chromosomal abnormality rates at amniocentesis and in live-born infants. JAMA. 1983;249:2034–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tartaglia M, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet. 2002;70:1555–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Schubbert S, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38:331–6.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts AE, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007;39:70–4.

    Article  CAS  PubMed  Google Scholar 

  16. Razzaque MA, et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet. 2007;39:1013–7.

    Article  CAS  PubMed  Google Scholar 

  17. Cirstea IC, et al. A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet. 2010;42:27–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Niihori T, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38:294–6.

    Article  CAS  PubMed  Google Scholar 

  19. Aoki Y, et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet. 2013;93:173–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mehraein Y, et al. Microdeletion 22q11 in complex cardiovascular malformations. Hum Genet. 1997;99:433–42.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson DI, et al. DiGeorge syndrome with isolated aortic coarctation and isolated ventricular septal defect in three sibs with a 22q11 deletion of maternal origin. Br Heart J. 1991;66:308–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lindsay EA, et al. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001;410:97–101.

    Article  CAS  PubMed  Google Scholar 

  23. Ellison JW, et al. PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Hum Mol Genet. 1997;6:1341–7.

    Article  CAS  PubMed  Google Scholar 

  24. Prandstraller D, et al. Turner’s syndrome: cardiologic profile according to the different chromosomal patterns and long-term clinical follow-Up of 136 nonpreselected patients. Pediatr Cardiol. 1999;20:108–12.

    Article  CAS  PubMed  Google Scholar 

  25. Dietz HC, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337–9.

    Article  CAS  PubMed  Google Scholar 

  26. Keramati AR, Sadeghpour A, Farahani MM, Chandok G, Mani A. The non-syndromic familial thoracic aortic aneurysms and dissections maps to 15q21 locus. BMC Med Genet. 2010;11:143.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Loeys BL, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–81.

    Article  CAS  PubMed  Google Scholar 

  28. van de Laar IM, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43:121–6.

    Article  PubMed  Google Scholar 

  29. Boileau C, et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet. 2012;44:916–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Pober BR. Williams-Beuren syndrome. N Engl J Med. 2010;362:239–52.

    Article  CAS  PubMed  Google Scholar 

  31. Satoda M, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet. 2000;25:42–6.

    Article  CAS  PubMed  Google Scholar 

  32. Wynne-Davies R. Genetics and malformations of the hand. Hand. 1971;3:184–92.

    Article  CAS  PubMed  Google Scholar 

  33. Mani A, et al. Syndromic patent ductus arteriosus: evidence for haploinsufficient TFAP2 mutations and identification of a linked sleep disorder. Proc Natl Acad Sci U S A. 2005;102:2975–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Terrett JA, et al. Holt-Oram syndrome is a genetically heterogeneous disease with one locus mapping to human chromosome 12q. Nat Genet. 1994;6:401–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azin Alizadehasl MD, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Mani, A., Alizadehasl, A. (2014). Syndromic Congenital Heart Diseases. In: Sadeghpour, A., Kyavar, M., Alizadehasl, A. (eds) Comprehensive Approach to Adult Congenital Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6383-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6383-1_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6382-4

  • Online ISBN: 978-1-4471-6383-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics