Skip to main content

Genetics and Epigenetics: Basic Concepts

  • Chapter
  • First Online:
Neurodegenerative Diseases
  • 1780 Accesses

Abstract

Genetics is fundamental to our understanding of human variation, and by linking medical and evolutionary themes, it enables us to understand the origins and impacts of our genomic differences. The types of genetic variations used in genetic studies have changed over the last 20 years and can be classified into five major classes: RFLP (restriction fragment length polymorphism), VNTR (variable number of tandem repeat), STR (short tandem repeat or microsatellite), SNP (single-nucleotide polymorphism), and CNV (copy-number variation). Genetic linkage analysis using these tools helped to map and discover genes responsible for hundreds of hereditary diseases. Furthermore, construction of the international SNP database and recent development of high-throughput SNP typing platforms enabled us to perform genome-wide association studies, which have identified genes (or genetic variations) susceptible to common diseases. Moreover, in recent years genome-wide sequencing of individual DNAs is gaining relevant scope.

Likewise, epigenetic factors determined by gene-environment interactions, including systematic exposures or chance encounters with environmental factors in one’s surroundings, add even more complexity to individual disease risk and the pattern of disease inheritance.

Epigenetics comprises the investigation of chemical modifications in the DNA and histones that regulates the gene expression or cellular phenotype.

Genetics and epigenetics, together with their newly designed technologies capable to analyze changes, have disclosed an appealing scenario that will offer for the biomedical sciences new insight for the study of neurodegenerative diseases, multifactorial complex diseases, and rare diseases. In this chapter, the main genetic and epigenetic variations will be overviewed together with the technologies adapted for their study, and the use of their modifications as possible biomarkers in several diseases will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura Y. DNA variations in human and medical genetics: 25 years of my experience. J Hum Genet. 2009;54:1–8.

    Article  PubMed  CAS  Google Scholar 

  2. Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet. 2009;10:241–51.

    Article  PubMed  CAS  Google Scholar 

  3. Ku CS, Loy EY, Salim A, Pawitan Y, Chia KS. The discovery of human genetic variations and their use as disease markers: past, present and future. J Hum Genet. 2010;55:403–15.

    Article  PubMed  Google Scholar 

  4. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452:872–6.

    Article  PubMed  CAS  Google Scholar 

  5. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Kim JI, Ju YS, Park H, Kim S, Lee S, Yi JH, et al. A highly annotated whole genome sequence of a Korean individual. Nature. 2009;460:1011–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Haberman Y, Amariglio N, Rechavi G, Eisenberg E. Trinucleotide repeats are prevalent among cancer-related genes. Trends Genet. 2008;24:14–8.

    Article  PubMed  CAS  Google Scholar 

  10. Hannan AJ. Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for ‘missing heritability’. Trends Genet. 2010;26:59–65.

    Article  PubMed  CAS  Google Scholar 

  11. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–55.

    Article  PubMed  CAS  Google Scholar 

  12. Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217:624–6.

    Article  PubMed  CAS  Google Scholar 

  13. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987;235:1616–22.

    Article  PubMed  CAS  Google Scholar 

  15. Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature (London). 1985;314:67–73.

    Article  CAS  Google Scholar 

  16. Odelberg SJ, Plaetke R, Eldridge JR, Ballard L, O’Connell P, Nakamura Y. Characterization of eight VNTR loci by agarose gel electrophoresis: implications for parentage testing and forensic individualization. Genomics. 1989;5:915–24.

    Article  PubMed  CAS  Google Scholar 

  17. Gatti R, Nakamura Y, Nussmeier M, Susi E, Shan W, Grody W. Informativeness of VNTR genetic markers for detecting chimerism after bone marrow transplantation. Dis Markers. 1989;7:105–12.

    PubMed  CAS  Google Scholar 

  18. Vogelstein B, Fearon ER, Kern SE, Hamilton SR, Preisinger AC, Nakamura Y. Allelotype of colorectal carcinomas. Science. 1989;244:207–11.

    Article  PubMed  CAS  Google Scholar 

  19. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.

    Article  PubMed  CAS  Google Scholar 

  20. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–51.

    Article  PubMed  CAS  Google Scholar 

  21. Redon R, Ishikawa S, Fitch KR. Global variation in copy number in the human genome. Nature. 2006;444:444–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Vogelstein B, Fearon ER, Hamilton SR, Kern S, Presinger AC, Leppert M. Genetic alterations during colorectal tumor development. N Engl J Med. 1988;319:525–32.

    Article  PubMed  CAS  Google Scholar 

  23. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, et al. Chromosome 17 deletions and p53 mutations in colorectal carcinomas. Science. 1989;244:217–21.

    Article  PubMed  CAS  Google Scholar 

  24. Gusella JF, Wexler NS, Connelly PM, Naylor SL, Anderson MA, Tanzi RE. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306:234–8.

    Article  PubMed  CAS  Google Scholar 

  25. Weber JL, May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989;44:388–96.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Lander ES, Botstein D. Homozygosity mapping—a way to map human recessive traits with the DNA of inbred children. Science. 1987;236:1567–70.

    Article  PubMed  CAS  Google Scholar 

  27. The International HapMap Consortium. The international HapMap project. Nature. 2003;426:789–96.

    Article  CAS  Google Scholar 

  28. Sawcer S. The complex genetics of multiple sclerosis: pitfalls and prospects. Brain. 2008;131:3118–31.

    Article  PubMed Central  PubMed  Google Scholar 

  29. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.

    Article  CAS  Google Scholar 

  30. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  PubMed Central  CAS  Google Scholar 

  31. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  PubMed  CAS  Google Scholar 

  32. Abecasis GR, Altshuler D, Auton A, 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  PubMed  CAS  Google Scholar 

  33. Lill CM, Bertram L. Towards unveiling the genetics of neurodegenerative diseases. Semin Neurol. 2011;31(5):531–41.

    Article  PubMed  Google Scholar 

  34. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  PubMed  CAS  Google Scholar 

  35. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21:214–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.

    Article  PubMed  CAS  Google Scholar 

  37. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  PubMed  CAS  Google Scholar 

  38. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.

    Article  PubMed  CAS  Google Scholar 

  39. Weber M, Schübeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol. 2007;19:273–80.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang YJ, Wu HC, Shen J, Ahsan H, Tsai WY, Yang HI, et al. Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin Cancer Res. 2007;13:2378–84.

    Article  PubMed  CAS  Google Scholar 

  41. Wong IH, Lo YM, Yeo W, Lau WY, Johnson PJ. Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients. Clin Cancer Res. 2000;6:3516–21.

    PubMed  CAS  Google Scholar 

  42. Tong YK, Lo YM. Plasma epigenetic markers for cancer detection and prenatal diagnosis. Front Biosci. 2006;11:2647–56.

    Article  PubMed  CAS  Google Scholar 

  43. Dieker J, Muller S. Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol. 2010;39:78–84.

    Article  PubMed  CAS  Google Scholar 

  44. Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y. Epigenetics and autoimmunity. J Autoimmun. 2010;34:J207–19.

    Article  PubMed  CAS  Google Scholar 

  45. McDevitt MA. Clinical applications of epigenetic markers and epigenetic profiling in myeloid malignancies. Semin Oncol. 2012;39:109–22.

    Article  PubMed  CAS  Google Scholar 

  46. Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9:1795–803.

    Article  PubMed  CAS  Google Scholar 

  47. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Bernstein E, Allis CD. RNA meets chromatin. Genes Dev. 2005;19:1635–55.

    Article  PubMed  CAS  Google Scholar 

  49. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94:776–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome. 2006;17:189–202.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Chang TC, Mendell JT. MicroRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet. 2007;8:215–39.

    Article  PubMed  CAS  Google Scholar 

  52. Fabbri M, Ivan M, Cimmino A, Negrini M, Calin GA. Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther. 2007;7:1009–19.

    Article  PubMed  CAS  Google Scholar 

  53. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci. 2008;28:14341–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Fenoglio C, Ridolfi E, Galimberti D, Scarpini E. MicroRNAs as active players in the pathogenesis of multiple sclerosis. Int J Mol Sci. 2012;13(10):13227–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Esquela-Kerscher A. MicroRNAs function as tumor suppressor genes and oncogenes. In: Slack F, editor. MicroRNAs in development and cancer. London: Imperial College Press; 2010.

    Google Scholar 

  56. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  PubMed  CAS  Google Scholar 

  57. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  PubMed  CAS  Google Scholar 

  59. Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A, et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev. 2011;25:226–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem. 2009;284:31921–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107:810–7.

    Article  PubMed  CAS  Google Scholar 

  62. Zen K, Zhang CY. Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32:326–48.

    Article  PubMed  CAS  Google Scholar 

  63. Fenoglio C, Ridolfi E, Cantoni C, De Riz M, Bonsi R, Serpente M, et al. Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Mult Scler. 2013;19(14):1938–42.

    Article  PubMed  Google Scholar 

  64. Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci. 2010;13(11):1338–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA, et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci. 2011;14(10):1345–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci. 2008;28(42):10576–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Nakahata Y, Grimaldi B, Sahar S, Hirayama J, Sassone-Corsi P. Signaling to the circadian clock: plasticity by chromatin remodeling. Curr Opin Cell Biol. 2007;19(2):230–7.

    Article  PubMed  CAS  Google Scholar 

  68. Wong C, Meaburn E, Ronald A, Price J, Jeffries A, Schalkwy L, et al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder (ASD) and related behavioural traits. Mol Psychiatry 2013. doi:10.1038/mp.2013.41. [Epub ahead of print].

  69. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82(3):696–711.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Mill J, Petronis A. Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry. 2007;12(9):799–814.

    Article  PubMed  CAS  Google Scholar 

  71. Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, et al. Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol. 2010;90(4):498–510.

    Article  PubMed  CAS  Google Scholar 

  72. Balazs R, Vernon J, Hardy J. Epigenetic mechanisms in Alzheimer’s disease: progress but much to do. Neurobiol Aging. 2011;32(7):1181–7.

    Article  PubMed  CAS  Google Scholar 

  73. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging. 2011;32(7):1161–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Mill J. Toward an integrated genetic and epigenetic approach to Alzheimer’s disease. Neurobiol Aging. 2011;32(7):1188–91.

    Article  PubMed  CAS  Google Scholar 

  75. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29:e65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Fenoglio PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Fenoglio, C. (2014). Genetics and Epigenetics: Basic Concepts. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-6380-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6380-0_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6379-4

  • Online ISBN: 978-1-4471-6380-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics