Biosensors and Sensor Systems



This chapter is concerned with the design and operation of devices for the measurement of chemical concentrations in living systems. Whilst the meaning of chemical sensors has been somewhat broadened in recent years, a useful definition from a recent authoritative review (McDonagh et al, Chem Rev 108:400–422, 2008) is: “chemical sensors are miniaturised analytical devices that can deliver real time and online information on the presence of specific compounds or ions in complex samples”. Historically, a useful distinction was made between chemical sensors and biosensors in that a biosensor used a biologically derived element (enzyme, antibody, cell, tissue sample etc.) as part of the transduction process. This useful distinction has now been lost; biosensor is now often applied to any sensor measuring a chemical concentration in a biological system. Jiri Janata makes a further distinction between sensors and sensor systems, sensors being capable of continuous monitoring and sensor systems providing measurements in discrete steps. Turner, in a recent tutorial review (Turner APF, Chem Soc Rev 42:31284-3196, 2013) identifies two broad categories of device described under the heading ‘biosensor’: sophisticated and high-throughput lab-based instrumentation for rapid and accurate analysis of complex biological interactions and components, and portable easy-to-use devices for non-expert use, out of the lab, in the home or in a field environment, ‘point-of-care’ devices. This chapter will describe both chemical and biosensor (in the historical sense) approaches to the identification and quantification of chemical species in living systems and describe both sensors and sensor systems as described above. It will also outline recent developments, notably new materials with great potential for sensor applications. The underlying principles of the most widely used sensor types are described to enable their proper operation, design of control instrumentation, optimisation of sensor design and correct interpretation of the resulting data. Exemplar applications are given to illustrate these principles.


Electrode Reaction Microelectrode Array Diffusion Limited Current Iridium Oxide Physiological Ionic Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McDonagh C, Burke CS, MacCraith BD, ‘Optical chemical sensors’ Chem. Rev. 108 400–422 (2008).Google Scholar
  2. 2.
    Turner APF, ‘Biosensors: sense and sensibility’ Chem. Soc. Rev. 42 31284–3196 (2013).Google Scholar
  3. 3.
    Moore FA, McKinley BA, ‘The next generation in shock resuscitation’ Lancet 363 1988–1996 (2004).Google Scholar
  4. 4.
    Sanders GHW & Manz A, ‘Chip-based microsystems for genomic and proteomic analysis’ Trac Trends in Analytical Chemistry, 19(6) 364–378 (2000).Google Scholar
  5. 5.
    Lander ES ‘The new genomics: global views of biology’ Science 274 5287 (1996).Google Scholar
  6. 6.
    Nielsen J and Oliver S ‘The next wave in metabolome analysis’ Trends in Biotechnology 23(11) 544–546 (2005).Google Scholar
  7. 7.
    Croston GE ‘Functional cell‐based uHTS in chemical genomic drug discovery’. Trends in Biotechnology 20(3) 110–115(2002).Google Scholar
  8. 8.
    Dittrich PS and Manz A, ‘Lab‐on‐a‐chip: microfluidics in drug discovery’ Nature Reviews Drug Discovery 5(3): p. 210–218 (2006).Google Scholar
  9. 9.
    Wunberg T, et al., ‘Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits’ Drug Discovery Today,. 11(3–4) 175–180 (2006).Google Scholar
  10. 10.
    Hong J, Edel JB and deMello AJ, ‘Micro- and nanofluidic systems for high-throughput biological screening’. Drug Discovery Today 14(3–4)134–146 (2009).Google Scholar
  11. 11.
    Vadgama PM, Schoeleber in P.N. Bartlett (ed.) ‘Bioelectrochemistry: fundamentals, experimental techniques and applications’ Wiley 2008, Chapter 13.Google Scholar
  12. 12.
    Seo J-H, Leow PL, Cho S-H, Lim H-W, Kim J-Y, Patel BA, Park J-G & O’Hare D, ‘Development of inlaid electrodes for whole column electrochemical detection in HPLC’ Lab on a Chip 9 2238–2244 (2009).Google Scholar
  13. 13.
    Malinski T & Taha Z, Nature 358 676–678 (1992).Google Scholar
  14. 14.
    Updike JW & Hicks JP, Nature 214 986–988 (1967).Google Scholar
  15. 15.
    Bartlett PN & Caruana DJ, Analyst 117 1287 (1992)Google Scholar
  16. 16.
    Khurana M.K, Winlove C.P & O’Hare D. ‘Detection Mechanism of Metallised Carbon Epoxy Oxidase Enzyme Based Sensors’ Electroanalysis 15 1023–1030 (2003).Google Scholar
  17. 17.
    Barker SA in Turner APF et al. (eds.) Biosensors: Fundamentals and Applications Oxford University Press, Oxford 1987. Ch. 6.Google Scholar
  18. 18.
    Willner I, Science 229 1877 (2003).Google Scholar
  19. 19.
    Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins LJ, Plotkin EV, Scott LD & Turner APF, Anal. Chem. 56 657 (1984).Google Scholar
  20. 20.
    Bartlett PN & Bradford VQ, J.C.S. Chem Comm. 16 1135–1136 (1990)Google Scholar
  21. 21.
    Zhao S, Korell U, Cuccia L & Lennox RB, J. Phys. Chem. 96 5641–5652 (1992).Google Scholar
  22. 22.
    Boutelle MG, Stanford C, Fillenz M, Albery MJ & Bartlett PN, Neuroscience. Lett. 72 283–288 (1986).Google Scholar
  23. 23.
    Ye M, Hammerle AJJ, Olstehoorn W, Schumann W, Schmidt AK, Duine JA & Heller A, Anal. Chem. 65 238 (1993).Google Scholar
  24. 24.
    Heller A et al. Acc. Chem. Res. 23 128 (1990).Google Scholar
  25. 25.
    Song KM, Lee S, Ban C, ‘Aptamers and Their Biological Applications’ Sensors 12 612–631 (2012).Google Scholar
  26. 26.
    Fodey T, Leonard P, O’Mahony J. et al. ‘Developments in the production of biological and synthetic binders for immunoassay and sensor-based detection of small molecules’ TRAC-Trends in analytical chemistry 30 254–269 (2011)Google Scholar
  27. 27.
    Iliuk AB, Hu L, Tao WA, ‘Aptamer in Bioanalytical Applications’ Anal. Chem. 83 4440–4452 (2011).Google Scholar
  28. 28.
    Ellington AD & Szostak JW ‘In vitro selection of RNA molecules that bind specific ligands’ Nature 346 818–22 (1990).Google Scholar
  29. 29.
    Liu J, Cao Z, Lu Y, ‘Functional nucleic acid sensors’ Chem. Rev. 109 1948–1998 (2009).Google Scholar
  30. 30.
    Tombelli S, Minunni A & Mascini A, ‘Analytical applications of aptamers’ Biosensors & Bioelectronics 20 2424–2434 (2005).Google Scholar
  31. 31.
    Liu, Y, Matharu Z, Howland MC, Revzin A & Simonian AL ‘Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing’ Anal. Bioanal. Chem. 404 1181–1196 (2012)Google Scholar
  32. 32.
    Zhou J, Battig M R, Wang Y, ‘Aptamer-based molecular recognition for biosensor development’ Anal. Bioanal. Chem. 398 2471–2480 (2010)Google Scholar
  33. 33.
    Palchetti I & Mascini M ‘Electrochemical nanomaterial-based nucleic acid aptasensors’ Anal. Bioanal. Chem. 402 3103–3114 (2012).Google Scholar
  34. 34.
    Yano K, Karube I TRAC Trends Anal Chem 18 199–204 (1999).Google Scholar
  35. 35.
    Shimizu KD, Stephenson CJ Curr. Opin. Chem. Biol. 14 743–750 (2010)Google Scholar
  36. 36.
    Suryanarayanan V, Wu C-T, Ho K-C Electroanalysis 22 1795–1811 (2010).Google Scholar
  37. 37.
    Malitesta C & Mazzotta E, Picca RA, Poma A, Chianella I & Piletsky SA, ‘MIP sensors – the electrochemical approach’ Anal. Bioanal. Chem. 402 1827–1846 (2012).Google Scholar
  38. 38.
    Wang X-D. & Wolfbeis OS, ‘Fiber-Optic Chemical Sensors and Biosensors (2008–2012)’ Anal. Chem. 85 487–508 (2013)Google Scholar
  39. 39.
    Stewart MER, Anderton LB, Thompson J, Maria SK, Gray JA, Rogers & RG Nuzzo ‘Nanostructured plasmonic sensors’ Chem. Rev. 108 494–521 (2008)Google Scholar
  40. 40.
    Kergoat L, Piro B, Berggren M, Horowitz G & Pham M-C ‘Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors’ Anal. Bioanal. Chem. 402 1813–1826 (2012).Google Scholar
  41. 41.
    Goeders KM, Colton JS, Bottomley LA, ‘Microcantilevers: Sensing Chemical Interactions via Mechanical Motion’ Chem. Rev. 108 522–542 (2008).Google Scholar
  42. 42.
    Stine R, Mulvaney SP, Robinson JT, Tamanaha CR & Sheehan PE, ‘Fabrication, Optimization, and Use of Graphene Field Effect Sensors’ Anal. Chem., 85 509–521 (2013).Google Scholar
  43. 43.
    Kim DJ, Sohn IY, Jung JH, Yoon OJ, Lee NE, Park JS ‘Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection’ Biosens Bioelectron. 41 621–626 (2013).Google Scholar
  44. 44.
    Kwak YH. Choi DS, Kim YN, Kim H, Yoon DH, Ahn S-S, Yang JW, Yang WS, Seo S ‘Flexible glucose sensor using CVD-grown graphene-based field effect transistor’ Biosens. Bioelectron., 37, 82–87 (2012).Google Scholar
  45. 45.
    McKinley BA, ‘ISFET and fiber optic sensor technologies: in vivo experience and critical care monitoring’, Chem. Rev. 108 826–44 (2008)Google Scholar
  46. 46.
    Kimmel DW, LeBlanc G, Meschievitz ME, and Cliffel DE ‘Electrochemical Sensors and Biosensors’ Anal. Chem. 84 685–707 (2012).Google Scholar
  47. 47.
    Pletcher D ‘A first course in electrode processes’ 2nd ed. Royal Society of Chemistry, Cambridge 2009.Google Scholar
  48. 48.
    Bard AJ & Faulkner LR ‘Electrochemical methods: fundamentals and applications’ 2nd ed. Wiley, Chichester 2001.Google Scholar
  49. 49.
    Kissinger P & Heineman WR, ‘Laboratory techniques in electroanalytical chemistry’ 2nd ed. Marcel Dekker, New York 1996.Google Scholar
  50. 50.
    Pletcher D, Greff R, Peat R, Peter LM, Robinson J, Woodhead Publishing, Cambridge 2001.Google Scholar
  51. 51.
    Purves RD, ‘Microelectrode methods for intracellular recording and ionophoresis’ Academic Press, London 1981.Google Scholar
  52. 52.
    Amman D, ‘Ion-selective microelectrodes: Principles, Design and Applications’ Springer-Verlag: Berlin, 1986.Google Scholar
  53. 53.
    Voipio J. In ‘pH and Brain Function’ Kaila, K., Ransom, B. R., (Eds.) Wiley-Liss: New York, 1998; p 95.Google Scholar
  54. 54.
    Takahashi A, Camacho P, Lechleiter J, ‘Measurement of intracellular calcium’ Herman, B. Physiol. Rev. 1999, 79, 1089.Google Scholar
  55. 55.
    Cremer M, ‘Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von Polyphasischen Elektrolytketten.’ Z. Biol. 47 56 (1906).Google Scholar
  56. 56.
    Idegami K, Chikae M, Nagatani N, Tamiya E, Takamura Y, ‘Fabrication and Characterization of Planar Screen-Printed Ag/AgCl Reference Electrode for Disposable Sensor Strip’ Jpn. J. Appl. Phys., 49 097001–097003 (2010).Google Scholar
  57. 57.
    Park WJ, Yi Y, Lee J, Lee BC, Park OK, Lee HJ, Lee H, ‘N-heterocyclic carbene–silver complex as a novel reference electrode in electrochemical applications’ Talanta 81 482–485 (2010).Google Scholar
  58. 58.
    Noh J, Park S, Boo H, Kim HC, Chung TD ‘Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip’ Lab on a Chip 11 664–671 (2010).Google Scholar
  59. 59.
    Capone S, A de Robertin, C de Stefano, & Scarcella R, ‘Ionic strength dependence of formation constants X. Proton activity coefficients at various temperatures and ionic strength and their use in the study of complex equilibria’, Talanta 34 593–598 (1987).Google Scholar
  60. 60.
    Fedirko N, Svichar N, & Chesler M, ‘Fabrication and use of high speed concentric H+ and Ca2+ selective microelectrodes suitable for in vitro extracellular recording’ J. Neurophysiol. 96, 919. (2006),Google Scholar
  61. 61.
    Ujec E, Keller O, Machek J, and Pavlik V. Low impedance coaxial K+ selective microelectrodes. Pfluegers Arch 382 189–192, 1979Google Scholar
  62. 62.
    Ives DJG in “Reference Electrodes” D.J.G. Ives & G.J. Janz (eds.) Academic Press, New York, 1961, Chapter 7.Google Scholar
  63. 63.
    Głab S, Hulanicki A, Edwall G & F Ingman, ‘Metal-metal oxide and metal oxide electrodes as pH sensors’ Crti. Rev. Anal. Chem. 21 29–47 (1989).Google Scholar
  64. 64.
    O’Hare D, Parker KH & Winlove CP “Metal-metal oxide pH sensors for physiological application” Medical Engineering & Physics 28 982–8 (2006)Google Scholar
  65. 65.
    Haggard HW & Greenberg LA, ‘An antimony electrode for the continuous recording of the acidity of human gastric contents’ Science, (1941) 93 479.Google Scholar
  66. 66.
    Horrocks BR, Mirkin MV, Pierce DT, Bard AJ, Nagy G, Toth K, ‘Scanning Electrochemical Microscopy XIX. Ion-Selective Potentiometric Microscopy’ Anal. Chem. (1993) 65 1213.Google Scholar
  67. 67.
    Patel BA, Bitziou E & O’Hare D, ‘Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach’ Anal. Chem. 80 8733–8740 (2008).Google Scholar
  68. 68.
    Bitziou E, O’Hare D & Patel BA ‘Spatial changes in acid secretion from isolated stomach tissue using a pH-histamine sensing microarray’ Analyst 135 482–487 (2010).Google Scholar
  69. 69.
    Hitchman ML, & Ramanathan S, ‘Evaluation of iridium oxide electrodes formed by potential cycling as pH probes’ Analyst 113 35(1988).Google Scholar
  70. 70.
    Yamanaka K, ‘Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices’ Jap. J. Appl. Phys. 28 632–37 (1989).Google Scholar
  71. 71.
    Bezbaruah AN; Zhang TC, ‘Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies’ Anal. Chem. 74 5726–5733 (2002).Google Scholar
  72. 72.
    Marzouk SAM ‘Improved electrodeposited iridium oxide pH sensor fabricated on etched titanium substrates’ Anal. Chem. 75 1258–1266 (2003).Google Scholar
  73. 73.
    Moussy F, & Harrison DJ ‘Prevention of the Rapid Degradation of Subcutaneously Implanted Ag/AgCl Reference Electrodes Using Polymer Coatings’ Anal. Chem. 66 674–679 (1994).Google Scholar
  74. 74.
    Bakker EP, Bühlmann P & Pretsch E, ‘Carrier-based ion-selective electrodes and bulk optodes 1. General characteristics’ Chem. Rev. 97 3083–3132 (1997).Google Scholar
  75. 75.
    Bühlmann P, Pretsch E & Bakker E, ‘Carrier-based ion-selective electrodes & bulk optodes 2. Ionophores for potentiometric and optical sensors’, Chem. Rev. 98 1593–1688 (1998).Google Scholar
  76. 76.
    Bakker E & Pretsch E, ‘Potentiometric sensors for trace metal analysis’ TrAC Trends in Analytical Chemistry 24 199–207 (2005).Google Scholar
  77. 77.
    Pretsch E, ‘The new wave of ion-selective electrodes’ TrAC, Trends in Analytical Chemistry 26 46–51 (2007).Google Scholar
  78. 78.
    Bobcka J, Ivaska A & Lewenstam A, ‘Potentiometric ion sensors’ 108 329–51 (2008).Google Scholar
  79. 79.
    Lindner E & Buck RP, ‘Microfabricated potentiometric electrodes and their in vivo applications’ Anal. Chem., 72, 336A (2000).Google Scholar
  80. 80.
    Bausells J, Errachid A, Zine N, ‘Biosensors based on standard dielectric materials’ Proc. Electrochem. Soc. 2003-1 ‘Dielectrics in emerging technologies’ 48. 2003-1, 48. (2003).Google Scholar
  81. 81.
    Wygladacz K, Durnas M, Parzuchowski, P, Brzozka, Z & Malinowska E. ‘Miniaturized sodium-selective sensors based on silicon back-side contact structure with novel self-plasticizing ion-selective membranes’ Sens. Actuators, B 95 366–372 (2003).Google Scholar
  82. 82.
    Sundfors F, Bereczki R, Bobacka J, Toth K, Ivaska A & Gyurcsányi, R. E. ‘Microcavity Based Solid-Contact Ion-Selective Microelectrodes’ Electroanalysis, 18, 1372–8 (2006).Google Scholar
  83. 83.
    Guenat OT, Generelli S, de Rooij NF, Koudelka-Hep M, Berthiaume F & Yarmush MC, ‘Development of an Array of Ion-Selective Microelectrodes Aimed for the Monitoring of Extracellular Ionic Activities’, Anal. Chem. 78 7453–60 (2006)Google Scholar
  84. 84.
    Tymecki Ł, Zwierkowska E, Koncki R. ‘Screen-printed reference electrodes for potentiometric measurements’ Anal. Chim. Acta, 526 3–11 (2004).Google Scholar
  85. 85.
    Liao W-Y, & Chou T-C ‘Fabrication of a Planar-Form Screen-Printed Solid Electrolyte Modified Ag/AgCl Reference Electrode for Application in a Potentiometric Biosensor’ Anal. Chem. 78 4219 (2006).Google Scholar
  86. 86.
    Vazquez M, Danielsson P, Bobacka J, Lewenstam A. & Ivaska A. ‘Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes’ Sens. Actuators, B 97 182 (2004).Google Scholar
  87. 87.
    Cosofret V, Erdösy M, Johnson TA, Buck RP, Ash RB, Neuman MR Anal. Chem. 1995, 67, 1647–1653.Google Scholar
  88. 88.
    Lindner E, Buck R. Anal. Chem. 2000, 72, 336A–345A.Google Scholar
  89. 89.
    Uhlig A, Lindner E, Teutloff C, Schnakenberg U & Hintsche R ‘Miniaturized ion-selective chip electrodes for sensor application’ Anal. Chem., 69, 4032–4038 (1997).Google Scholar
  90. 90.
    Yoon HJ, Shin JH, Lee SD, Nam H, Cha GS, Strong TD Brown RB ‘Solid state ion sensors with a liquid junction-free polymer membrane-based reference electrode for blood analysis’ Sens. Actuators, B 64, 8–14(2000).Google Scholar
  91. 91.
    Compton RG & Banks CE ‘Understanding voltammetry’ World Scientific Press, New Jersey, 2007.Google Scholar
  92. 92.
    Bockris JO’M, Reddy AKN ‘Modern Electrochemistry Volume 2, Part 2’, Plenum, New York (2000).Google Scholar
  93. 93.
    Wightman RM & Wipf DO, in Bond A (ed.) ‘Electroanalytical Chemistry Volume 15’ Marcel Dekker, New York 1989, p267.Google Scholar
  94. 94.
    Saito Y Rev. Polarograph. 15 177 (1968).Google Scholar
  95. 95.
    Bond, Luscombe AMD, Oldham KB & Zoski CG, J. Electroanal. Chem. 249 1–14.Google Scholar
  96. 96.
    Patel BA, Arundell M, Parker KH, Yeoman MS & O’Hare D, ‘Microelectrode investigation of neuronal ageing from a single identified neurone’ Physical Chemistry Chemical Physics 12(34) 10065–10072 (2010)Google Scholar
  97. 97.
    Amatore C, Oleinick AI, Svir A. ‘Diffusion from within a Spherical Body with Partially Blocked Surface: Diffusion through a Constant Surface Area’ Chem. Phys. Chem. 11 149 (2009); ‘Reconstruction of Aperture Functions During Full Fusion in Vesicular Exocytosis of Neurotransmitters’ ib. 159 (2009).Google Scholar
  98. 98.
    Patel BA, Arundell M, Parker KH, Yeoman MS, O’Hare D, ‘Detection of nitric oxide release from single neurons in the pond snail, Lymnaea stagnalisAnal. Chem. 78(22) 7643–7648 (2006).Google Scholar
  99. 99.
    Yeoman MS, Patel BA, Arundell M, Parker K, O’Hare D ‘Synapse-specific changes in serotonin signalling contribute to age-related changes in the feeding behaviour of the pond snail, LymnaeaJ. Neurochem. 106(4) 1699–1709 (2008).Google Scholar
  100. 100.
    Phillips CG & Jansons KM, Proc. Roy. Soc. A 428 431–449.Google Scholar
  101. 101.
    O’Hare D, Parker KH, Winlove CP, J. Biomed Eng 13 304 (1991).Google Scholar
  102. 102.
    Justice JB (ed.) Voltammetry in the Neurosciences Humana, Clifton, New Jersey 1987.Google Scholar
  103. 103.
    Cahill PS, Walker QD, Finnegan JM, Mickelson GE, Travis ER & Wightman RMW, Analytical Chemistry 68 3180–3186 (1996).Google Scholar
  104. 104.
    Compton RG & Banks CE, ‘Understanding Voltammetry’ World Scientific, New Jersey 2007.Google Scholar
  105. 105.
    Hochstetler SE, Puopolo M, Gustincich S, Raviola E, Wightman RM, ‘Real time amperometric measurements of zeptomole quantities of dopamine released from neurons’, Anal. Chem. 72 489–496 (2006).Google Scholar
  106. 106.
    Bard AJ & Faulkner LR, Electrochemical Methods Wiley, New York 1980.Google Scholar
  107. 107.
    Fleming BD, Barlow NL, Zhang J, Bond AM, Armstrong FA, Application of Power Spectra Patterns in Fourier Transform Square Wave Voltammetry to Evaluate Electrode Kinetics of Surface Confined Proteins, Anal. Chem., 78 2948–2956 (2006)Google Scholar
  108. 108.
    Zhang J, Bond AM, Theoretical Studies of Large Amplitude Alternating Current Voltammetry for a Reversible Surface-Confined Electron Transfer Process Coupled to a Pseudo First-Order Electrocatalytic Process, J. Electroanal. Chem. 600 23–34 (2007).Google Scholar
  109. 109.
    Anastassiou C, Parker KH & O’Hare D ‘Determination of kinetic and thermodynamic parameters of surface confined species through ac voltammetry and a nonstationary signal processing technique: the Hilbert transform’ Anal. Chem. 77 3357–3364 (2005).Google Scholar
  110. 110.
    Anastassiou CA, Patel BA, Parker KH & O’Hare D, ‘Characterisation of ac voltammetric reaction - diffusion dynamics: from patterns to physical parameters’, Anal. Chem. 78 4383–4389 (2006).Google Scholar
  111. 111.
    Anastassiou CA , Parker KH, O’Hare D, ‘Scaling in nonstationary voltammetry representations’, J Phys. Chem. A, 111, 13053–13060 (2007).Google Scholar
  112. 112.
    Anastassiou CA, Patel BA, Arundell M, Yeoman MS, Parker KH and O’Hare D, ‘Novel subsecond voltammetric separation between dopamine and serotonin in the presence of ascorbate’ Anal. Chem. 78(19) 6990–6998 (2006).Google Scholar
  113. 113.
    Bell CG, Anastassiou CA, O’Hare D, Parker KH & Siggers JH, Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems, Electrochimica Acta 64 71–80 (2012).Google Scholar
  114. 114.
    Bell CG, Anastassiou CA, O’Hare D, Parker KH , Siggers JH ‘Large-amplitude ac voltammetry: Theory for reversible redox reactions in the slow scan limit approximation’, Electrochimica Acta 56(17) 6131–6141 (2011).Google Scholar
  115. 115.
    Heer F, Franks W, Blau A, Taschini S, Ziegler C, Hierlemann A, Baltes H ‘CMOS microelectrode array for the monitoring of electrogenic cells’ Biosensors and Bioelectronics 20(2) 358–366 (2004).Google Scholar
  116. 116.
    Graham AHD, Robbins J, Bowen CR et al., ‘Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors’ Sensors 11(5) 4943–4971 (2011).Google Scholar
  117. 117.
    Graham AHD, Bowen CR, Surguy SM, ‘New prototype assembly methods for biosensor integrated circuits’ Medical Engineering & Physics 33(8) 973–979 (2011).Google Scholar
  118. 118.
    Graham AHD, Surguy SM, Langlois P, Bowen CR, Taylor J et al. Modification of standard CMOS technology for cell-based biosensors, Biosensors & Bioelectronics, 31(1) 458–462 (2012).Google Scholar
  119. 119.
    Lin Y, Trouillon R, Svensson MI, Keighron JD, Cans AS and Ewing AG, Carbon-Ring Microelectrode Arrays for Electrochemical Imaging of Single Cell Exocytosis: Fabrication and Characterization. Anal. Chem. 84 2949–2954 (2012).Google Scholar
  120. 120.
    Huang X-J, O’Mahony AM, & Compton RG, ‘Microelectrode Arrays for Electrochemistry: Approaches to Fabrication’, Small, 5 776–788 (2009)Google Scholar
  121. 121.
    Patel BA, Arundell M, Quek RGW, Harvey SLR, Ellis IR, Florence MM, Cass AEG, Schor AM, O’Hare D, ‘Individual addressable microelectrode array for monitoring oxygen and nitric oxide release’ Anal. Bioanal. Chem. 390(5) 1379–1387 (2008).Google Scholar
  122. 122.
    Trouillon R, Combs Z, Patel BA and O’Hare D, ‘Comparative study of the effect of various electrode membranes on biofouling and electrochemical measurements’ Electrochem. Comm. 11 1409–1413 (2009).Google Scholar
  123. 123.
    Frost M & Meyerhoff ME, ‘In vivo sensors: tackling biocompatibility’ Anal. Chem. 78 7370–7377 (2006).Google Scholar
  124. 124.
    Morais JM, Papadimitrakopoulos IF, and Burgess DJ ‘Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response’ American Association of Pharmaceutical Scientists J. 12 188–196 (2010).Google Scholar
  125. 125.
    Ward WK, Quinn MJ, Wood MD, Tiekotte KLr, Sudha Pidikiti, Jennifer A. Gallagher Biosensors 7 Bioelectronics 19 155–163 (2003) ‘Vascularizing the tissue surrounding a model biosensor: how localized is the effect of a subcutaneous infusion of vascular endothelial growth factor (VEGF)?’Google Scholar
  126. 126.
    Klueh U, Dorsky DI, Kreutzer DL, ‘Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization’ Biomaterials 26 1155–63 (2005).Google Scholar
  127. 127.
    Trouillon R, Cheung C, Patel BA & O’Hare D, ‘Comparative study of poly(styrene-sulphonate)/poly(L-lysine) and fibronectin as biofouling-preventing layers in dissolved oxygen electrochemical measurements’ Analyst 134 784–93 (2009).Google Scholar
  128. 128.
    Ressinea A, Vaz-Domínguez C, Fernandez VM, De Lacey AL, Laurell T, Ruzgas T, Shleev S ‘Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on gold-modified nano-/microstructured silicon’ Biosensors and Bioelectronics 25 1001–1007 (2010).Google Scholar
  129. 129.
    Trasatti S and Petriim OA ‘Real surface area measurements in electrochemistry’ Pure & Appl. Chem., 63, 71 1–734 (1991)Google Scholar
  130. 130.
    Trouillon R, Kang, D-K, Park H, Chang S-I & O’Hare D, ‘Angiogenin induces nitric oxide synthesis in endothelial cells by PI-3 kinases and nuclear translocation pathways’ Biochemistry 49 3282–3288 (2010).Google Scholar
  131. 131.
    Trouillon R, Cheung C, Patel BA, O’Hare D, ‘Electrochemical study of the intracellular transduction of vascular endothelial growth factor induced nitric oxide synthase activity using a multi-channel biocompatible microelectrode array’ Biochim. Biophys. Acta (Gen. Subj.), 1800(9) 929–936 (2010).Google Scholar
  132. 132.
    Trouillon R, Williamson ED, Saint RJ, O’Hare D, ‘Electrochemical detection of the binding of Bacillus anthracis protective antigen (PA) to the membrane receptor on macrophages through release of nitric oxide’ Biosensors and Bioelectronics 38 138–144 (2012).Google Scholar
  133. 133.
    Patten HV, Meadows KE, Hutton LA, Iacobini JG, Battistel D, McKelvey K, Colburn AW, Newton ME, Macpherson JV, and Unwin PR, ‘Electrochemical Mapping Reveals Direct Correlation between Heterogeneous Electron-Transfer Kinetics and Local Density of States in Diamond Electrodes’ Angew. Chem. Int. Ed. 51, 7002–7006 (2012)Google Scholar
  134. 134.
    Trouillon R & O’Hare D ‘Comparison of glassy carbon and boron doped diamond electrodes: resistance to biofouling’ Electrochimica Acta 55(22) 6586–6595 (2010).Google Scholar
  135. 135.
    Trouillon R, O’Hare D, Einaga Y, ‘Effect of doping level on the biological stability of hydrogenated boron doped diamond electrodes’ Physical Chemistry Chemical Physics 13 5422–5429 (2011).Google Scholar
  136. 136.
    Park J, Quaiserova-Mocko V, Patel BA, Novotny M, Liu A, Bian X, Galligan JJ, Swain G M ‘Diamond microelectrodes for in vitro electroanalytical measurements: current status and remaining challenges’ Analyst, 133 17–24 (2008).Google Scholar
  137. 137.
    Park J, Show Y, Quaiserova V, Galligan JJ, Fink GD, Swain GM, ‘Diamond microelectrodes for use in biological environments’ J. Electroanal. Chem. 583 56–68 (2005).Google Scholar
  138. 138.
    Patel BA ‘Electroanalytical approaches to study signaling mechanisms in the gastrointestinal tract’ Neurogastroenterlogy & Motility 23 595–605Google Scholar
  139. 139.
    Hutton LA, Iacobini JG, Bitziou E, Channon RB, Newton ME, Macpherson JV, ‘Examination of the factors affecting the electrochemical performance of oxygen-terminated polycrystalline boron-doped diamond electrodes’ Anal. Chem. in press|A.Google Scholar
  140. 140.
    Jones CP, Jurkschat K, Crossley A, Compton RG, Riehl BL, Banks CE, ‘Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations’ Langmuir, 23 9501–9504 (2007).Google Scholar
  141. 141.
    Sims MJ, Rees NV, Dickinson EJF, Compton RG, ‘Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG)’ Sensors and Actuators B, 144, (2010), 153–158.Google Scholar
  142. 142.
    Dumitrescu I, Unwin PR, and Macpherson JV, ‘Electrochemistry at Carbon Nanotubes: Perspectives and Issues’ Chem. Commun., 45, 6886–6901 (2009).Google Scholar
  143. 143.
    P. Bertoncello JP, Edgeworth JV, Macphersonand Unwin PR ‘Trace level cyclic voltammetry facilitated by single-walled carbon nanotube network electrodes’ J. Am. Chem. Soc. 129 10982–10983 (2007).Google Scholar
  144. 144.
    Güell AG, Meadows KE, Unwin PR, and Macpherson JV, ‘Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes’ Phys. Chem. Chem. Phys. 12 10108–10114 (2010).Google Scholar
  145. 145.
    Dudin PV, Snowden ME, Macpherson JV, and Unwin PR ‘Electrochemistry at nanoscale electrodes (NSEs): individual single walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires’ ACS Nano, 5 10017–10025 (2011)Google Scholar
  146. 146.
    Boero C, Carrara S, de Micheli G ‘Long-term Biosensors for Metabolite Monitoring by using Carbon Nanotubes’ Sensors & Transducers Journal, 125, , 229–237 (2011).Google Scholar
  147. 147.
    Brownson DAC, Kampouris DK, Banks CE, ‘Graphene electrochemistry: fundamental concepts through to prominent applications’ Chem. Soc. Rev., 41 6944–6976 (2012).Google Scholar
  148. 148.
    Kim YJ, Chun S-E, Whitacreab J & Bettinger CJ, ‘Self-deployable current sources fabricated from edible materials’ J. Mater. Chem. B DOI:  10.1039/c3tb20183j in press.
  149. 149.
    Grande, Chundi L, Wei VT, Bower D, Andrew C, P, Ryhanen, T , ‘Graphene for energy harvesting/storage devices and printed electronics’ Particuology 10 1–8 (2012)Google Scholar
  150. 150.
    Xuan Y, Sandberg M, Berggren M, Crispin X, Organic Electronics 13 632–637 (2012).Google Scholar
  151. 151.
    Kawahara J, Andersson Ersman P, Nilsson D, Katoh K, Nakata Y, Sandberg M, Nilsson M, Gustafsson G & Berggren M, ‘Flexible active matrix addressed displays manufactured by printing and coating techniques’ J. Polym. Sci. B Polym. Phys. 51 265–271 (2013).Google Scholar
  152. 152.

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of BioengineeringImperial College LondonLondonUK

Personalised recommendations