Normal Pressure Hydrocephalus

  • Paolo MissoriEmail author
  • Antonio Daniele
  • Carlo Colosimo


Although it has been nearly 50 years since its first description of clinical and radiological, there is considerable uncertainty about the diagnosis of normal pressure hydrocephalus because it shares the semiotics with the group of dementias. Hakim’s triad (impaired gait, initially type clumsiness of the lower limbs followed over time by inability to ambulate or maintain an erect posture; cognitive impairment, initially limited to worsening deficits in memory fixation and execution of complex actions; the urinary disorder, initially type “urgent urination” and then complete urinary incontinence) characterizes the progressive course of the adult chronic hydrocephalus. The clinical onset is typically nonspecific, subtle, and most often monosymptomatic. The first diagnostic procedure is a head CT scan and/or brain MRI, which shows an abnormal dilatation of the lateral ventricles and the third ventricle, associated to variable brain atrophy. Not all subjects will develop a set of symptoms, since the altered cerebrospinal fluid dynamics can remain stable for many years or get progressively worse until the appearance of the clinical triad of normal pressure hydrocephalus. The test of intrathecal infusion (Katzman test) carried out at constant speed with the introduction of saline solution into the lumbar subarachnoid space and the concomitant detection of cerebrospinal fluid pressure establishes that patients with outflow resistance ranging from 12 to 19 mmHg/ml/min can improve clinically after surgery. This method requires extensive and prolonged experience of the center of application and the use of computer systems. The withdrawal of lumbar cerebrospinal fluid provides for the evacuation of 30–50 cc of cerebrospinal fluid by lumbar puncture under local anesthesia, preceded and followed by gait assessment and neuropsychological tests. It also uses the continuous withdrawal of CSF with an intrathecal catheter placed for 3 days, in order to drain approximately 135 ml/24 h and the aim of reducing false negatives. After surgery, the patient is usually able to regain a good quality of life, with independence in daily living activities. The duration of such postsurgical improvement is variable, but patients may improve again readjusting the opening pressure of the programmable valve, although a high comorbidity index is strictly related to a poor outcome.


Cerebrospinal fluid Dementia Gait abnormalities Hydrocephalus Idiopathic Normal pressure Programmable valve Shunt Urinary incontinence Ventricle 


  1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WT. Symptomatic occult hydrocephalus with “normal” cerebrospinal fluid pressure: a treatable syndrome. N Engl J Med. 1965;273:117–26.PubMedGoogle Scholar
  2. Aitken RR, Drake CG. Continuous spinal drainage in the treatment of postoperative cerebrospinal-fluid fistulae. J Neurosurg. 1964;21:275–7.PubMedGoogle Scholar
  3. Albert F. Lumbar puncture as applied to craniocerebral surgery. Ann Surg. 1918;68:549–50.Google Scholar
  4. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.PubMedGoogle Scholar
  5. Ambarki K, Israelsson H, Wåhlin A, Birgander R, Eklund A, Malm J. Brain ventricular size in healthy elderly: comparison between Evans index and volume measurement. Neurosurgery. 2010;67:94–9.PubMedGoogle Scholar
  6. Amini A, Schmidt RH. Endoscopic third ventriculostomy in a series of 36 adult patients. Neurosurg Focus. 2005;19:E9.PubMedGoogle Scholar
  7. Anderson RC, Grant JJ, de la Paz R, Frucht S, Goodman RR. Volumetric measurements in the detection of reduced ventricular volume in patients with normal-pressure hydrocephalus whose clinical condition improved after ventriculoperitoneal shunt placement. J Neurosurg. 2002;97:73–9.PubMedGoogle Scholar
  8. Aquilina K, Pople IK, Sacree J, Carter MR, Edwards RJ. The constant flow ventricular infusion test: a simple and useful study in the diagnosis of third ventriculostomy failure. J Neurosurg. 2012;116:445–52.PubMedGoogle Scholar
  9. Aygok G, Marmarou A, Young HF. Three-year outcome of shunted idiopathic NPH patients. Acta Neurochir Suppl. 2005;95:241–5.PubMedGoogle Scholar
  10. Bech-Azeddine R, Waldemar G, Knudsen GM, Hogh P, Bruhn P, Wildschiodtz G, Gjerris F, Paulson OB, Juhler M. Idiopathic normal-pressure hydrocephalus: evaluation and findings in a multidisciplinary memory clinic. Eur J Neurol. 2001;8:601–11.PubMedGoogle Scholar
  11. Black PM. Idiopathic normal-pressure hydrocephalus. Results of shunting in 62 patients. J Neurosurg. 1980;52:371–7.PubMedGoogle Scholar
  12. Bloch O, McDermott MW. Lumboperitoneal shunts for the treatment of normal pressure hydrocephalus. J Clin Neurosci. 2012;19:1107–11.PubMedGoogle Scholar
  13. Bloom KK, Kraft WA. Paranoia–an unusual presentation of hydrocephalus. Am J Phys Med Rehabil. 1998;77:157–9.PubMedGoogle Scholar
  14. Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Avezaat CJ, de Jong DA, Gooskens RH, Hermans J. Dutch Normal-Pressure Hydrocephalus Study: randomized comparison of low- and medium-pressure shunts. J Neurosurg. 1998;88:490–5.PubMedGoogle Scholar
  15. Bouras T, Sgouros S. Complications of endoscopic third ventriculostomy: a systematic review. Acta Neurochir Suppl. 2012;113:149–53.PubMedGoogle Scholar
  16. Bradley Jr WG, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P. Normal pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996;198:523–9.PubMedGoogle Scholar
  17. Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. Acta Neurol Scand. 2008;118:48–53.PubMedGoogle Scholar
  18. Browning W. Lumbar puncture for the removal of cerebro-spinal fluid. In: Browning W, editor. The normal and pathological circulation in the central nervous system. Philadelphia: J. B. Lippincott Company; 1897. p. 54–60.Google Scholar
  19. Cabral D, Beach TG, Vedders L, Sue LI, Jacobson S, Myers K, Sabbagh MN. Frequency of Alzheimer’s disease pathology at autopsy in patients with clinical normal pressure hydrocephalus. Alzheimers Dement. 2011;7:509–13.PubMedCentralPubMedGoogle Scholar
  20. Cage TA, Auguste KI, Wrensch M, Wu YW, Gupta N. Self-reported functional outcome after surgical intervention in patients with idiopathic normal pressure hydrocephalus. J Clin Neurosci. 2011;18:649–54.PubMedGoogle Scholar
  21. Casmiro M, Benassi G, Cacciatore FM, D’Alessandro R. Frequency of idiopathic normal pressure hydrocephalus. Arch Neurol. 1989;46:608.PubMedGoogle Scholar
  22. Chakravarty A. Unifying concept for Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus – a hypothesis. Med Hypotheses. 2004;63:827–33.PubMedGoogle Scholar
  23. Chang CC, Kuwana N, Ito S. Management of patients with normal-pressure hydrocephalus by using lumboperitoneal shunt system with the Codman Hakim programmable valve. Neurosurg Focus. 1999;7:e8.PubMedGoogle Scholar
  24. Chang S, Agarwal S, Williams MA, Rigamonti D, Hillis AE. Demographic factors influence cognitive recovery after shunt for normal-pressure hydrocephalus. Neurologist. 2006;12:39–42.PubMedGoogle Scholar
  25. Christensen PB. Normal pressure hydrocephalus in myotonic dystrophy. Eur Neurol. 1988;28:285–7.PubMedGoogle Scholar
  26. Clarfield AM. The decreasing prevalence of reversible dementias: an updated meta-analysis. Arch Intern Med. 2003;163:2219–29.PubMedGoogle Scholar
  27. Colitti MC, Casaccia V, Bella A, Perra A, Binkin N. VETUS a Orvieto un'indagine sulla qualità della vita delle persone con più di 64 anni nel comune di Orvieto. Not Ist Super Sanità. 2006;11:III–IV.Google Scholar
  28. Conn HO. Normal pressure hydrocephalus (NPH): more about NPH by a physician who is the patient. Clin Med. 2011;11:162–5.PubMedGoogle Scholar
  29. Cummings JL, Benson DF. Subcortical dementia. Review of an emerging concept. Arch Neurol. 1984;41:874–9.PubMedGoogle Scholar
  30. Cusimano MD, Rewilak D, Stuss DT, Barrera-Martinez JC, Salehi F, Freedman M. Normal-pressure hydrocephalus: is there a genetic predisposition? Can J Neurol Sci. 2011;38:274–81.PubMedGoogle Scholar
  31. Czosnyka M, Czosnyka Z, Momjian S, Schmidt E. Calculation of the resistance to CSF outflow. J Neurol Neurosurg Psychiatry. 2003;74:1354.PubMedCentralPubMedGoogle Scholar
  32. Damasceno BP, Carelli EF, Honorato DC, Facure JJ. The predictive value of cerebrospinal fluid tap-test in normal pressure hydrocephalus. Arq Neuropsiquiatr. 1997;55:179–85.PubMedGoogle Scholar
  33. Dandy WE. Ventriculography following the injection of air into the cerebral ventricles. Ann Surg. 1918;68:5–11.PubMedCentralPubMedGoogle Scholar
  34. Delavallée M, Raftopoulos C. Normal pressure hydrocephalus in a patient with myotonic dystrophy: case report with a 10-year follow-up. Neurosurgery. 2006;58:E796.PubMedGoogle Scholar
  35. Devito EE, Pickard JD, Salmond CH, Iddon JL, Loveday C, Sahakian BJ. The neuropsychology of normal pressure hydrocephalus (NPH). Br J Neurosurg. 2005;19:217–24.PubMedGoogle Scholar
  36. Di Lauro L, Mearini M, Bollati A. The predictive value of 5 days CSF diversion for shunting in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1986;49:842–3.PubMedCentralPubMedGoogle Scholar
  37. Edsbagge M, Tisell M, Jacobsson L, Wikkelso C. Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1450–5.PubMedGoogle Scholar
  38. El Sankari S, Fichten A, Gondry-Jouet C, Czosnyka M, Legars D, Deramond H, Balédent O. Correlation between tap test and CSF aqueductal stroke volume in idiopathic normal pressure hydrocephalus. Acta Neurochir Suppl. 2012;113:43–6.PubMedGoogle Scholar
  39. Esmonde T, Cooke S. Shunting for normal pressure hydrocephalus (NPH). Cochrane Database Syst Rev. 2002;(3):CD003157.Google Scholar
  40. Evans WA. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry. 1942;47:931–7.Google Scholar
  41. Fabiano AJ, Doyle K, Grand W. Delayed stoma failure in adult communicating hydrocephalus after initial successful treatment by endoscopic third ventriculostomy: case report. Neurosurgery. 2010;66:E1210–1.PubMedGoogle Scholar
  42. Farahmand D, Hilmarsson H, Högfeldt M, Tisell M. Perioperative risk factors for short term shunt revisions in adult hydrocephalus patients. J Neurol Neurosurg Psychiatry. 2009;80:1248–53.PubMedGoogle Scholar
  43. Fisher CM. Communicating hydrocephalus. Lancet. 1978;1(8054):37.PubMedGoogle Scholar
  44. Fisher CM. Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology. 1982;32:1358–63.PubMedGoogle Scholar
  45. Fountas KN, Kapsalaki EZ, Paterakis KN, Lee GP, Hadjigeorgiou GM. Role of endoscopic third ventriculostomy in treatment of selected patients with normal pressure hydrocephalus. Acta Neurochir Suppl. 2012;113:129–33.PubMedGoogle Scholar
  46. Freimann FB, Sprung C. Shunting with gravitational valves–can adjustments end the era of revisions for overdrainage-related events?: clinical article. J Neurosurg. 2012;117:1197–204.PubMedGoogle Scholar
  47. Gallassi R, Morreale A, Montagna P, Sacquegna T, Di Sarro R, Lugaresi E. Binswanger’s disease and normal-pressure hydrocephalus. Clinical and neuropsychological comparison. Arch Neurol. 1991;48:1156–9.PubMedGoogle Scholar
  48. Gangemi M, Maiuri F, Buonamassa S, Colella G, de Divitiis E. Endoscopic third ventriculostomy in idiopathic normal pressure hydrocephalus. Neurosurgery. 2004;55:129–34.PubMedGoogle Scholar
  49. Gangemi M, Maiuri F, Naddeo M, Godano U, Mascari C, Broggi G, Ferroli P. Endoscopic third ventriculostomy in idiopathic normal pressure hydrocephalus: an Italian multicenter study. Neurosurgery. 2008;63:62–7.PubMedGoogle Scholar
  50. Gawler J, Du Boulay GH, Bull JW, Marshall J. Computerized tomography (the EMI Scanner): a comparison with pneumoencephalography and ventriculography. J Neurol Neurosurg Psychiatry. 1976;39:203–11.PubMedCentralPubMedGoogle Scholar
  51. Goodman M, Meyer WJ. Dementia reversal in post-shunt normal pressure hydrocephalus predicted by neuropsychological assessment. J Am Geriatr Soc. 2001;49:685–6.PubMedGoogle Scholar
  52. Greenberg JO, Shenkin HA, Adam R. Idiopathic normal pressure hydrocephalus– a report of 73 patients. J Neurol Neurosurg Psychiatry. 1977;40:336–41.PubMedCentralPubMedGoogle Scholar
  53. Greenfield JG. Lumbar puncture in diagnosis. Br Med J. 1935;2:1265–7.PubMedCentralPubMedGoogle Scholar
  54. Gunasekera L, Richardson AE. Computerized axial tomography in idiopathic hydrocephalus. Brain. 1977;100:749–54.PubMedGoogle Scholar
  55. Hashimoto M, Ishikawa M, Mori E, Kuwana N, Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res. 2010;7:18.PubMedCentralPubMedGoogle Scholar
  56. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60:1119–22.PubMedGoogle Scholar
  57. Hellström P, Klinge P, Tans J, Wikkelsø C. A new scale for assessment of severity and outcome in iNPH. Acta Neurol Scand. 2012;126:229–37.PubMedGoogle Scholar
  58. Hiraoka K, Meguro K, Mori E. Prevalence of idiopathic normal-pressure hydrocephalus in the elderly population of a Japanese rural community. Neurol Med Chir. 2008;48:197–9.Google Scholar
  59. Honda K, Matsumoto M, Kaneko T, Kamei I, Tatsumi H, Murai N, Mineharu Y, Oita J. Linear deposition of immunoglobulins and complement components on the dura in normal pressure hydrocephalus complicating systemic lupus erythematosus. J Clin Neurosci. 2004;11:561–3.PubMedGoogle Scholar
  60. Iddon JL, Pickard JD, Cross JJ, Griffiths PD, Czosnyka M, Sahakian BJ. Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer’s disease: a pilot study. J Neurol Neurosurg Psychiatry. 1999;67:723–32.PubMedCentralPubMedGoogle Scholar
  61. Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, Ohkawa S, Uemura T, Yoshikawa T, Mori E. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18:2678–83.PubMedGoogle Scholar
  62. Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, Takeuchi T, Kazui H, Koyama H. Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo). 2008;48(Suppl):S1–23.PubMedGoogle Scholar
  63. Jacobs L, Kinkel W. Computerized axial transverse tomography in normal pressure hydrocephalus. Neurology. 1976;26(6 PT1):501–7.PubMedGoogle Scholar
  64. Johnston M. The importance of lymphatics in cerebrospinal fluid transport. Lymphat Res Biol. 2003;1:41–4.PubMedGoogle Scholar
  65. Karabatsou K, Quigley G, Buxton N, Foy P, Mallucci C. Lumboperitoneal shunts: are the complications acceptable? Acta Neurochir (Wien). 2004;146:1193–7.Google Scholar
  66. Katzman R, Hussey F. A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology. 1970;20:534–44.PubMedGoogle Scholar
  67. Kaye JA, Grady CL, Haxby JV, Moore A, Friedland RP. Plasticity in the aging brain. Reversibility of anatomic, metabolic, and cognitive deficits in normal-pressure hydrocephalus following shunt surgery. Arch Neurol. 1990;47:1336–41.PubMedGoogle Scholar
  68. Keucher TR, Mealey Jr J. Long-term results after ventriculoatrial and ventriculoperitoneal shunting for infantile hydrocephalus. J Neurosurg. 1979;50:179–86.PubMedGoogle Scholar
  69. Kiefer M, Eymann R, Steudel WI. Outcome predictors for normal-pressure hydrocephalus. Acta Neurochir Suppl. 2006;96:364–7.PubMedGoogle Scholar
  70. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol. 1998;19:1277–84.PubMedGoogle Scholar
  71. Kito Y, Kazui H, Kubo Y, Yoshida T, Takaya M, Wada T, Nomura K, Hashimoto M, Ohkawa S, Miyake H, Ishikawa M, Takeda M. Neuropsychiatric symptoms in patients with idiopathic normal pressure hydrocephalus. Behav Neurol. 2009;21:165–74.PubMedGoogle Scholar
  72. Klinge P, Marmarou A, Bergsneider M, Relkin N, Black PM. Outcome of shunting in idiopathic normal-pressure hydrocephalus and the value of outcome assessment in shunted patients. Neurosurgery. 2005;57(3 Suppl):S40–52.PubMedGoogle Scholar
  73. Klinge P, Hellström P, Tans J, Wikkelsø C, European iNPH Multicentre Study Group. One-year outcome in the European multicentre study on iNPH. Acta Neurol Scand. 2012;126:145–53.PubMedGoogle Scholar
  74. Koch HJ, Nanev D, Becker K. Acute behaviour disorder in a patient with X-linked hydrocephalus with normal pressure. Wien Med Wochenschr. 2009;159:62–4.PubMedGoogle Scholar
  75. Koivisto AM, Alafuzoff I, Savolainen S, Sutela A, Rummukainen J, Kurki M, Jääskeläinen JE, Soininen H, Rinne J, Leinonen V. Poor cognitive outcome in shunt-responsive idiopathic normal pressure hydrocephalus. Neurosurgery. 2013;72:1–8.PubMedGoogle Scholar
  76. Krauss JK, Halve B. Normal pressure hydrocephalus. survey on contemporary diagnostic algorithms and therapeutic decision-making in clinical practice. Acta Neurochir. 2004;146:379–88.PubMedGoogle Scholar
  77. Kubo Y, Kazui H, Yoshida T, Kito Y, Kimura N, Tokunaga H, Ogino A, Miyake H, Ishikawa M, Takeda M. Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus. Dement Geriatr Cogn Disord. 2008;25:37–45.PubMedGoogle Scholar
  78. Kwentus JA, Hart RP. Normal pressure hydrocephalus presenting as mania. J Nerv Ment Dis. 1987;175:500–2.PubMedGoogle Scholar
  79. Lam CH, Villemure JG. Comparison between ventriculoatrial and ventriculoperitoneal shunting in the adult population. Br J Neurosurg. 1997;11:43–8.PubMedGoogle Scholar
  80. Larsson A, Wikkelsö C, Bilting M, Stephensen H. Clinical parameters in 74 consecutive patients shunt operated for normal pressure hydrocephalus. Acta Neurol Scand. 1991;84:475–82.PubMedGoogle Scholar
  81. Lemcke J, Meier U. Improved outcome in shunted iNPH with a combination of a Codman Hakim programmable valve and an Aesculap-Miethke Shunt Assistant. Cent Eur Neurosurg. 2010;71:113–6.PubMedGoogle Scholar
  82. Lemcke J, Meier U. Idiopathic normal pressure hydrocephalus (iNPH) and co-morbidity: an outcome analysis of 134 patients. Acta Neurochir Suppl. 2012;114:255–9.PubMedGoogle Scholar
  83. Lemcke J, Meier U, Müller C, Fritsch MJ, Kehler U, Langer N, Kiefer M, Eymann R, Schuhmann MU, Speil A, Weber F, Remenez V, Rohde V, Ludwig HC, Stengel D. Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomised, open label, multicentre trial (SVASONA). J Neurol Neurosurg Psychiatry. 2013;84:850–7.PubMedCentralPubMedGoogle Scholar
  84. Lenfeldt N, Hauksson J, Birgander R, Eklund A, Malm J. Improvement after cerebrospinal fluid drainage is related to levels of N-acetyl-aspartate in idiopathic normal pressure hydrocephalus. Neurosurgery. 2008a;62:135–41.PubMedGoogle Scholar
  85. Lenfeldt N, Larsson A, Nyberg L, Andersson M, Birgander R, Eklund A, Malm J. Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain. 2008b;131:2904–12.PubMedGoogle Scholar
  86. Lenfeldt N, Hansson W, Larsson A, Birgander R, Eklund A, Malm J. Three-day CSF drainage barely reduces ventricular size in normal pressure hydrocephalus. Neurology. 2012;79:237–42.PubMedGoogle Scholar
  87. Longatti PL, Fiorindi A, Martinuzzi A. Failure of endoscopic third ventriculostomy in the treatment of idiopathic normal pressure hydrocephalus. Minim Invasive Neurosurg. 2004;47:342–5.PubMedGoogle Scholar
  88. Luedemann W, Kondziella D, Tienken K, Klinge P, Brinker T, Berens von Rautenfeld D. Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus. Acta Neurochir Suppl. 2002;81:271–3.PubMedGoogle Scholar
  89. MacCordick AH. Observations on the value of lumbar puncture. Can Med Assoc J. 1922;12:168–70.PubMedCentralPubMedGoogle Scholar
  90. Malm J, Lundkvist B, Eklund A, Koskinen LO, Kristensen B. CSF outflow resistance as predictor of shunt function. A long-term study. Acta Neurol Scand. 2004;110:154–60.PubMedGoogle Scholar
  91. Malm J, Graff-Radford NR, Ishikawa M, Kristensen B, Leinonen V, Mori E, Owler BK, Tullberg M, Williams MA, Relkin NR. Influence of comorbidities in idiopathic normal pressure hydrocephalus – research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids Barriers CNS. 2013;10:22.PubMedCentralPubMedGoogle Scholar
  92. Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM. The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005a;57(3 Suppl):S17–28.PubMedGoogle Scholar
  93. Marmarou A, Bergsneider M, Relkin N, Klinge P, Black PM. Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction. Neurosurgery. 2005b;57(3 Suppl):S1–3.PubMedGoogle Scholar
  94. Marmarou A, Young HF, Aygok GA. Estimated incidence of normal pressure hydrocephalus and shunt outcome in patients residing in assisted-living and extended-care facilities. Neurosurg Focus. 2007;22:E1.Google Scholar
  95. Martin BJ, Roberts MA, Turner JW. Normal pressure hydrocephalus and Paget’s disease of bone. Gerontology. 1985;31:397–402.PubMedGoogle Scholar
  96. Matera R, Althabe BM. Continuous lumbar drainage of the cerebrospinal fluid in neurosurgery. Sem Med. 1962;121:1083–7.PubMedGoogle Scholar
  97. Matousek M, Wikkelsö C, Blomsterwall E, Johnels B, Steg G. Motor performance in normal pressure hydrocephalus assessed with an optoelectronic measurement technique. Acta Neurol Scand. 1995;91:500–5.PubMedGoogle Scholar
  98. Matson DD. A new operation for the treatment of communicating hydrocephalus: report of a case secondary to generalized meningitis. J Neurosurg. 1949;6:238–47.PubMedGoogle Scholar
  99. Mazza C, Pasqualin A, Da Pian R. Results of treatment with ventriculoatrial and ventriculoperitoneal shunt in infantile nontumoral hydrocephalus. Childs Brain. 1980;7:1–14.PubMedGoogle Scholar
  100. McConnell KA, Zou KH, Chabrerie AV, Bailey NO, Black PM. Decreases in ventricular volume correlate with decreases in ventricular pressure in idiopathic normal pressure hydrocephalus patients who experienced clinical improvement after implantation with adjustable valve shunts. Neurosurgery. 2004;55:582–92.PubMedCentralPubMedGoogle Scholar
  101. McGirr A, Cusimano MD. Familial aggregation of idiopathic normal pressure hydrocephalus: novel familial case and a family study of the NPH triad in an iNPH patient cohort. J Neurol Sci. 2012;321:82–8.PubMedGoogle Scholar
  102. McHugh PR. Occult hydrocephalus. Q J Med. 1964;33:297–308.PubMedGoogle Scholar
  103. Megison DP, Benzel EC. Ventriculo-pleural shunting for adult hydrocephalus. Br J Neurosurg. 1988;2:503–5.PubMedGoogle Scholar
  104. Meier U, Lemcke J. Clinical outcome of patients with idiopathic normal pressure hydrocephalus three years after shunt implantation. Acta Neurochir Suppl. 2006;96:377–80.PubMedGoogle Scholar
  105. Meier U, Lemcke J. The influence of co-morbidity on the postoperative outcomes of patients with idiopathic normal pressure hydrocephalus (iNPH). Acta Neurochir Suppl. 2008;102:141–4.PubMedGoogle Scholar
  106. Meier U, Lemcke J. Co-morbidity as a predictor of outcome in patients with idiopathic normal-pressure hydrocephalus. Acta Neurochir Suppl. 2010;106:127–30.PubMedGoogle Scholar
  107. Meier U, Paris S, Gräwe A, Stockheim D, Hajdukova A, Mutze S. Is there a correlation between operative results and change in ventricular volume after shunt placement? A study of 60 cases of idiopathic normal-pressure hydrocephalus. Neuroradiology. 2003;45:377–80.PubMedGoogle Scholar
  108. Mirzayan MJ, Luetjens G, Borremans JJ, Regel JP, Krauss JK. Extended long-term (> 5 years) outcome of cerebrospinal fluid shunting in idiopathic normal pressure hydrocephalus. Neurosurgery. 2010;67:295–301.PubMedGoogle Scholar
  109. Missori P, Paolini S, Currà A. From congenital to idiopathic adult hydrocephalus: a historical research. Brain. 2010;133:1836–49.PubMedGoogle Scholar
  110. Missori P, Paolini S, Domenicucci M. The origin of the cannula for ventriculostomy in pediatric hydrocephalus. J Neurosurg Pediatr. 2011;7:290–4.PubMedGoogle Scholar
  111. Moiyadi AV, Praharaj SS, Pillai VS, Chandramouli BA. Hydrocephalus in Paget’s disease. Acta Neurochir (Wien). 2006;148:1297–300.Google Scholar
  112. Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG. Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1593–9.PubMedGoogle Scholar
  113. Murakami M, Morine M, Iwasa T, Takahashi Y, Miyamoto T, Hon PK, Nakagawa Y. Management of maternal hydrocephalus requires replacement of ventriculoperitoneal shunt with ventriculoatrial shunt: a case report. Arch Gynecol Obstet. 2010;282:339–42.PubMedGoogle Scholar
  114. Naruse H, Matsuoka Y. Post-operative improvement of 14 cases who were considered iNPH despite Evans’ index of 0.3 or less. No Shinkei Geka. 2013;41:25–30.PubMedGoogle Scholar
  115. Nulsen F, Spitz EB. Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum. 1951;2:399–409.Google Scholar
  116. Olsen L, Frykberg T. Complications in the treatment of hydrocephalus in children. A comparison of ventriculoatrial and ventriculoperitoneal shunts in a 20-year material. Acta Paediatr Scand. 1983;72:385–90.PubMedGoogle Scholar
  117. Palm WM, Walchenbach R, Bruinsma B, Admiraal-Behloul F, Middelkoop HA, Launer LJ, van der Grond J, van Buchem MA. Intracranial compartment volumes in normal pressure hydrocephalus: volumetric assessment versus outcome. AJNR Am J Neuroradiol. 2006;27:76–9.PubMedGoogle Scholar
  118. Patwardhan RV, Nanda A. Implanted ventricular shunts in the United States: the billion-dollar-a-year cost of hydrocephalus treatment. Neurosurgery. 2005;56:139–44.PubMedGoogle Scholar
  119. Pinto FC, Saad F, Oliveira MF, Pereira RM, Miranda FL, Tornai JB, Lopes MI, Ribas ES, Valinetti EA, Teixeira MJ. Role of endoscopic third ventriculostomy and ventriculoperitoneal shunt in idiopathic normal pressure hydrocephalus: preliminary results of a randomized clinical trial. Neurosurgery. 2013;72:845–54.PubMedGoogle Scholar
  120. Poca MA, Mataró M, Del Mar Matarín M, Arikan F, Junqué C, Sahuquillo J. Is the placement of shunts in patients with idiopathic normal-pressure hydrocephalus worth the risk? Results of a study based on continuous monitoring of intracranial pressure. J Neurosurg. 2004;100:855–66.PubMedGoogle Scholar
  121. Portenoy RK, Berger A, Gross E. Familial occurrence of idiopathic normal-pressure hydrocephalus. Arch Neurol. 1984;41:335–7.PubMedGoogle Scholar
  122. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57:S4–16.PubMedGoogle Scholar
  123. Rhodes H. The value of lumbar puncture in general practice. Br Med J. 1903;2:73–4.PubMedCentralPubMedGoogle Scholar
  124. Rice E, Gendelman S. Psychiatric aspects of normal pressure hydrocephalus. JAMA. 1973;223:409–12.PubMedGoogle Scholar
  125. Riggs JE, Rubenstein MN, Gutmann L. Myotonic dystrophy and normal-pressure hydrocephalus. Neurology. 1985;35:1535.PubMedGoogle Scholar
  126. Roger H, Paillas J, Roger J, Tamalet J. Grande hydrocéphalie latente du vieillard chez une démente artérioscléreuse. Rev Neurol. 1950;82:437–8.PubMedGoogle Scholar
  127. Roohi F, Mann D, Kula RW. Surgical management of hydrocephalic dementia in Paget’s disease of bone: the 6-year outcome of ventriculo-peritoneal shunting. Clin Neurol Neurosurg. 2005;107:325–8.PubMedGoogle Scholar
  128. Saito M, Nishio Y, Kanno S, Uchiyama M, Hayashi A, Takagi M, Kikuchi H, Yamasaki H, Shimomura T, Iizuka O, Mori E. Cognitive profile of idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2011;1:202–11.PubMedCentralPubMedGoogle Scholar
  129. Sakakibara R, Kanda T, Sekido T, Uchiyama T, Awa Y, Ito T, Liu Z, Yamamoto T, Yamanishi T, Yuasa T, Shirai K, Hattori T. Mechanism of bladder dysfunction in idiopathic normal pressure hydrocephalus. Neurourol Urodyn. 2008;27:507–10.PubMedGoogle Scholar
  130. Sakakibara R, Uchida Y, Ishii K, Kazui H, Hashimoto M, Ishikawa M, Yuasa T, Kishi M, Ogawa E, Tateno F, Uchiyama T, Yamamoto T, Yamanishi T, Terada H. Correlation of right frontal hypoperfusion and urinary dysfunction in iNPH: a SPECT study. Neurourol Urodyn. 2012;31:50–5.PubMedGoogle Scholar
  131. Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology. 2008;50:117–22.PubMedGoogle Scholar
  132. Savitz MH, Bobroff LM. Low incidence of delayed intracerebral hemorrhage secondary to ventriculoperitoneal shunt insertion. J Neurosurg. 1999;91:32–4.PubMedGoogle Scholar
  133. Scollato A, Gallina P, Gautam B, Pellicanò G, Cavallini C, Tenenbaum R, Di Lorenzo N. Changes in aqueductal CSF stroke volume in shunted patients with idiopathic normal-pressure hydrocephalus. AJNR Am J Neuroradiol. 2009;30:1580–6.PubMedGoogle Scholar
  134. Shenkin HA, Greenberg JO, Grossman CB. Ventricular size after shunting for idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1975;38:833–7.PubMedCentralPubMedGoogle Scholar
  135. Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol. 2003;2:506–11.PubMedGoogle Scholar
  136. Singer OC, Melber J, Hattingen E, Jurcoane A, Keil F, Neumann-Haefelin T, Klein JC. MR volumetric changes after diagnostic CSF removal in normal pressure hydrocephalus. J Neurol. 2012;259:2440–6.PubMedGoogle Scholar
  137. Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Diercks C, Palmié S, Mehdorn HM, Illert M, Deuschl G. Gait analysis in idiopathic normal pressure hydrocephalus–which parameters respond to the CSF tap test? Clin Neurophysiol. 2000;111:1678–86.PubMedGoogle Scholar
  138. Stranjalis G, Kalamatianos T, Koutsarnakis C, Loufardaki M, Stavrinou L, Sakas DE. Twelve-year hospital outcomes in patients with idiopathic hydrocephalus. Acta Neurochir Suppl. 2012;113:115–7.PubMedGoogle Scholar
  139. Suzuchi H, Matsubara T, Kanamaru K, Kojima T. Chronic hydrocephalus presenting with bilateral ptosis after minor head injury: case report. Neurosurgery. 2000;47:977–9.Google Scholar
  140. Synek V, Reuben JR, Du Boulay GH. Comparing Evans’ index and computerized axial tomography in assessing relationship of ventricular size to brain size. Neurology. 1976;26:231–3.PubMedGoogle Scholar
  141. Takahashi Y, Kawanami T, Nagasawa H, Iseki C, Hanyu H, Kato T. Familial normal pressure hydrocephalus (NPH) with an autosomal-dominant inheritance: a novel subgroup of NPH. J Neurol Sci. 2011;308:149–51.PubMedGoogle Scholar
  142. Tanaka N, Yamaguchi S, Ishikawa H, Ishii H, Meguro K. Prevalence of possible idiopathic normal-pressure hydrocephalus in Japan: the Osaki-Tajiri project. Neuroepidemiology. 2009;32:171–5.PubMedGoogle Scholar
  143. Taylor AE, Saint-Cyr JA, Lang AE. Frontal lobe dysfunction in Parkinson’s disease. The cortical focus of neostriatal outflow. Brain. 1986;109:845–83.PubMedGoogle Scholar
  144. Tisell M, Hoglund M, Wikkelso C. National and regional incidence of surgery for adult hydrocephalus in Sweden. Acta Neurol Scand. 2005;112:72–5.PubMedGoogle Scholar
  145. Toma AK, Holl E, Kitchen ND, Watkins LD. Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery. 2011a;68:939–44.PubMedGoogle Scholar
  146. Toma AK, Stapleton S, Papadopoulos MC, Kitchen ND, Watkins LD. Natural history of idiopathic normal-pressure hydrocephalus. Neurosurg Rev. 2011b;34:433–9.PubMedGoogle Scholar
  147. Toma AK, Papadopoulos MC, Stapleton S, Kitchen ND, Watkins LD. Conservative versus surgical management of idiopathic normal pressure hydrocephalus: a prospective double-blind randomized controlled trial: study protocol. Acta Neurochir Suppl. 2012;113:21–3.PubMedGoogle Scholar
  148. Trenkwalder C, Schwarz J, Gebhard J, Ruland D, Trenkwalder P, Hense HW, Oertel WH. Starnberg trial on epidemiology of Parkinsonism and hypertension in the elderly. Prevalence of Parkinson’s disease and related disorders assessed by a door-to-door survey of inhabitants older than 65 years. Arch Neurol. 1995;52:1017–22.PubMedGoogle Scholar
  149. Vanneste J, Augustijn P, Tan WF, Dirven C. Shunting normal pressure hydrocephalus: the predictive value of combined clinical and CT data. J Neurol Neurosurg Psychiatry. 1993;56:251–6.PubMedCentralPubMedGoogle Scholar
  150. Vernet O, Campiche R, de Tribolet N. Long-term results after ventriculoatrial shunting in children. Childs Nerv Syst. 1993;9:253–5.PubMedGoogle Scholar
  151. Virhammar J, Cesarini KG, Laurell K. The CSF tap test in normal pressure hydrocephalus: evaluation time, reliability and the influence of pain. Eur J Neurol. 2012;19:271–6.PubMedGoogle Scholar
  152. von Ziemssen HW. Paracentesis of the spinal dura. Epitome of current medical literature. Br Med J. 1893;1:81.Google Scholar
  153. Vourc’h G. Continuous cerebrospinal fluid drainage by indwelling spinal catheter. Br J Anaesth. 1963;35:118–20.PubMedGoogle Scholar
  154. Vourc’h G, Rougerie J. Continuous drainage of the cerebrospinal fluid. New method by the installation of a permanent spinal catheter. Its value in neurosurgery. Presse Med. 1960;68:1491–2.PubMedGoogle Scholar
  155. Wang VY, Barbaro NM, Lawton MT, Pitts L, Kunwar S, Parsa AT, Gupta N, McDermott MW. Complications of lumboperitoneal shunts. Neurosurgery. 2007;60:1045–8.PubMedGoogle Scholar
  156. Westhout FD, Linskey ME. Obstructive hydrocephalus and progressive psychosis: rare presentations of neurosarcoidosis. Surg Neurol. 2008;69:288–92.PubMedGoogle Scholar
  157. Wikkelsø C, Andersson H, Blomstrand C, Lindqvist G. The clinical effect of lumbar puncture in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1982;45:64–9.PubMedCentralPubMedGoogle Scholar
  158. Wikkelsø C, Hellström P, Klinge PM, Tans JT. The European iNPH Multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2013;84:562–8.PubMedGoogle Scholar
  159. Wright EM. Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol. 1978;83:3–34.PubMedGoogle Scholar
  160. Wynter WE. Four cases of tubercular meningitis in which paracentesis was performed for the relief of fluid pressure. Lancet. 1891;1:981–2.Google Scholar
  161. Yadav YR, Parihar V, Sinha M. Lumbar peritoneal shunt. Neurol India. 2010;58:179–84.PubMedGoogle Scholar
  162. Yusim A, Anbarasan D, Bernstein C, Boksay I, Dulchin M, Lindenmayer JP, Saavedra-Velez C, Shapiro M, Sadock B. Normal pressure hydrocephalus presenting as Othello syndrome: case presentation and review of the literature. Am J Psychiatry. 2008;165:1119–25.PubMedGoogle Scholar
  163. Zemack G, Romner B. Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients. J Neurosurg. 2000;92:941–8.PubMedGoogle Scholar
  164. Zemack G, Romner B. Adjustable valves in normal-pressure hydrocephalus: a retrospective study of 218 patients. Neurosurgery. 2008;62 Suppl 2:677–87.PubMedGoogle Scholar
  165. Zhang J, Qu C, Wang Z, Wang C, Ding X, Pan S, Ji Y. Improved ventriculoatrial shunt for cerebrospinal fluid diversion after multiple ventriculoperitoneal shunt failures. Surg Neurol. 2009;72 Suppl 1:S29–33.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Paolo Missori
    • 1
    Email author
  • Antonio Daniele
    • 2
  • Carlo Colosimo
    • 3
  1. 1.Department of Neurology and Psychiatry, Policlinico “Umberto I”“Sapienza” University of RomeRomeItaly
  2. 2.Institute of Neurology, Policlinico “A. Gemelli”Catholic University of the Sacred HeartRomeItaly
  3. 3.Department of Neurology and Psychiatry“Sapienza” University of RomeRomeItaly

Personalised recommendations