Neurodegenerative Disorders: Dementia and Parkinsonism, Lumping Together or Splitting Apart?

  • Marcelo MerelloEmail author
  • Malco Rossi


Neurodegenerative diseases encompass several entities characterized by variable clinical features. Clinical presentation, anatomical regions affected, neuropathology, or molecular aspects of this group of diseases overlap frequently, rendering the “perfect” classification an almost impossible mission in many cases despite presence of the hallmark molecular findings. In this chapter, we will review the different classifications of neurodegenerative disorders as well as the artificial boundaries between movement disorders and dementias.


Dementia Parkinsonism Amyloidopathies Tauopathies Synucleinopathies FUSpathies Filament inclusion disorders 


  1. Aarsland D, Karlsen K. Neuropsychiatric aspects of Parkinson’s disease. Curr Psychiatry Rep. 1999;1(1):61–8.PubMedCrossRefGoogle Scholar
  2. Abeliovich A, Schmitz Y, Fariñas I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239–52.PubMedCrossRefGoogle Scholar
  3. Armstrong RA. The interface between Alzheimer’s disease, normal aging and related disorders. Curr Aging Sci. 2008;1:122–32.PubMedCrossRefGoogle Scholar
  4. Armstrong RA, Lantos PL, Cairns NJ. Overlap between neurodegenerative disorders. Neuropathology. 2005;25:111–24.PubMedCrossRefGoogle Scholar
  5. Armstrong R. On the ‘classification’ of neurodegenerative disorders: discrete entities, overlap or continuum? Folia Neuropathol. 2012;50(3):201–18.PubMedCrossRefGoogle Scholar
  6. Borges JL. John Wilkins’ analytical language. In: Weinberger E et al., editors and trans. The total library: non-fiction 1922–86. London: Penguin Books; 2001. p. 229–32.Google Scholar
  7. Brown RG, Marsden CD. ‘Subcortical dementia’: the neuropsychological evidence. Neuroscience. 1988;25(2):363–87.PubMedCrossRefGoogle Scholar
  8. Braga-Neto P, Felicio AC, Hoexter MQ, et al. Cognitive and olfactory deficits in Machado-Joseph disease: a dopamine transporter study. Parkinsonism Relat Disord. 2012;18(7):854–8.PubMedCrossRefGoogle Scholar
  9. Burn DJ, Jaros E. Multiple system atrophy: cellular and molecular pathology. Mol Pathol. 2001;54:419–26.PubMedCentralPubMedGoogle Scholar
  10. Carstea ED, Morris JA, Coleman KG, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277:228–31.PubMedCrossRefGoogle Scholar
  11. Clark LN, Kartsaklis LA, Wolf Gilbert R, et al. Association of glucocerebrosidase mutations with dementia with Lewy bodies. Arch Neurol. 2009;66:578–83.PubMedCentralPubMedGoogle Scholar
  12. Cummings CJ, Zoghbi HY. Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet. 2000;1:281–328.PubMedCrossRefGoogle Scholar
  13. Cummings JL. Subcortical dementia. Neuropsychology, neuropsychiatry, and pathophysiology. Br J Psychiatry. 1986;149:682–97.PubMedCrossRefGoogle Scholar
  14. Darvesh S, Freedman M. Subcortical dementia: a neurobehavioral approach. Brain Cogn. 1996;31(2):230–49.PubMedCrossRefGoogle Scholar
  15. Dickson DW, Bergeron C, Chin SS, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002;61:935–46.PubMedGoogle Scholar
  16. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314–24.PubMedCrossRefGoogle Scholar
  17. Duckett S, Stern J. Origins of the Creutzfeldt and Jakob concept. J Hist Neurosci. 1999;8:21–34.PubMedCrossRefGoogle Scholar
  18. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94.PubMedCrossRefGoogle Scholar
  19. Espay AJ, Litvan I. Parkinsonism and frontotemporal dementia: the clinical overlap. J Mol Neurosci. 2011;45(3):343–9.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fahn S, Jankovic J, Hallett M. Principles and practice of movement disorders. 2nd ed. Philadelphia: Elsevier; 2011.Google Scholar
  21. Feany MB, Dickson DW. Neurodegenerative disorders with ex-tensive tau pathology: a comparative study and review. Ann Neurol. 1996;40:139–48.PubMedCrossRefGoogle Scholar
  22. Förstl H. The Lewy body variant of Alzheimer’s disease: clinical, pathophysiological and conceptual issues. Eur Arch Psych Clin Neurol. 1999;249:64–7.CrossRefGoogle Scholar
  23. Galvin JE, Lee VM, Trojanowski JQ. Synucleinopathies: clinical and pathological implications. Arch Neurol. 2001;58:186–90.PubMedCrossRefGoogle Scholar
  24. Galpern WR, Lang AE. Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol. 2006;59(3):449–58.PubMedCrossRefGoogle Scholar
  25. Goedert M, Spillantini MG. Tau gene mutations and neurodegeneration. Biochem Soc Symp. 2001;67:59–71.PubMedGoogle Scholar
  26. Goedert M. The significance of tau and α-synuclein inclusions in neurodegenerative disease. Curr Opin Genet Dev. 2001a;11(3):343–51.PubMedCrossRefGoogle Scholar
  27. Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci. 2001b;2:492–501.PubMedCrossRefGoogle Scholar
  28. Goldstein LH, Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol. 2013;12(4):368–80.PubMedCrossRefGoogle Scholar
  29. Graeber MB, Kosel S, Egensperger R, Banati RB, Muller U, Bise K, Hoff P, Moller HJ, Fujisawa K, Mehraein P. Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis. Neurogenetics. 1997;1:73–80.PubMedCrossRefGoogle Scholar
  30. Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet. 2009;46:73–80.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Hainfellner JA, Wanschitz J, Jellinger K, Liberski PP, Gullotta F, Budka H. Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol. 1998;96:116–22.PubMedCrossRefGoogle Scholar
  32. Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, DeTeresa R, Thal L, Pay MM, Hofstetter R, Klauber M, et al. The Lewy body variant of Alzheimer’s disease: a clinical and pathologic entity. Neurology. 1990;40(1):1–8.PubMedCrossRefGoogle Scholar
  33. Hardy J. Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis. 2006;9(3 Suppl):151–3.PubMedGoogle Scholar
  34. Hasegawa M. Biochemistry and molecular biology of tauopathies. Neuropathology. 2006;26(5):484–90.PubMedCrossRefGoogle Scholar
  35. Holton JL, Ghiso J, Lashley T, et al. Regional distribution of amyloid-Bri deposition and its association with neurofibrillary degeneration in familial British dementia. Am J Pathol. 2001;158:515–26.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Holton JL, Lashley T, Ghiso J, et al. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta. J Neuropathol Exp Neurol. 2002;61:254–67.PubMedGoogle Scholar
  37. Hughes T, Ross H, Madeley P, Finlayson G, Mindham RH, Biggins CA. Subcortical dementia. BMJ. 1993;307(6902):503.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Hutton M. Missense and splice site mutations in tau associated with FTDP-17: multiple pathogenic mechanisms. Neurology. 2001;56(11 Suppl 4):S21–5.PubMedCrossRefGoogle Scholar
  39. Jellinger KA. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis. 2008;5:118–21.PubMedCrossRefGoogle Scholar
  40. Jellinger KA, Attems J. Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol. 2008;115(4):427–36.PubMedCrossRefGoogle Scholar
  41. Katsuno M, Banno H, Suzuki K, Adachi H, Tanaka F, Sobue G. Molecular pathophysiology and disease-modifying therapies or spinal and bulbar muscular atrophy. Arch Neurol. 2012;69(4):436–40.PubMedCrossRefGoogle Scholar
  42. Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.PubMedCrossRefGoogle Scholar
  43. Khateeb S, Flusser H, Ofir R, Shelef I, Narkis G, Vardi G, Shorer Z, Levy R, Galil A, Elbedour K, Birk OS. PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet. 2006;79(5):942–8.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Koeppen AH, Mazurkiewicz JE. Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol. 2013;72(2):78–90.PubMedCrossRefGoogle Scholar
  45. Koide R, Ikeuchi T, Onodera O, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.PubMedCrossRefGoogle Scholar
  46. Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, Perlmutter JS. Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Arch Neurol. 2012;69(10):1326–31.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kremen SA, Mendez MF, Tsai PH, Teng E. Extrapyramidal signs in the primary progressive aphasias. Am J Alzheimers Dis Other Demen. 2011;26(1):72–7.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Lee S, Antony L, Hartmann R, Knaus KJ, Surewicz K, Surewicz WK, Yee VC. Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J. 2010;29(1):251–62.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Davoisen RC, Goetz CG, Golbe LI, Grafman J, Growden JH, Hallett M, Jankovic J, Quinn NP, Tolisa E, Zee DS, Chase TW, FitzGibbon EJ, Hall Z, Juncos J, Nelson KB, Oliver E, Pramstaller P, Reich SG, Verny M. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP International Workshop. Neurology. 1996;47:1–9.PubMedCrossRefGoogle Scholar
  50. Ludolph AC, Kassubek J, Landwehrmeyer BG, et al. Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. Eur J Neurol. 2009;16(3):297–309.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Luheshi LM, Dobson CM. Bridging the gap: from protein misfolding to protein misfolding diseases. FEBS Lett. 2009;583:2581–6.PubMedCrossRefGoogle Scholar
  52. Mackenzie IR, Rademakers R. The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics. 2007;8:237–48.PubMedCrossRefGoogle Scholar
  53. Mackenzie IR, Neumann M, Bigio EH, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119(1):1–4.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Maltête D, Guyant-Maréchal L, Mihout B, Hannequi D. Movement disorders and Creutzfeldt-Jakob disease: a review. Parkinsonism Relat Disord. 2006;12(2):65–71.PubMedCrossRefGoogle Scholar
  55. Mead S, Poulter M, Uphill J. Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol. 2009;8(1):57–66.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Mesulam MM. A plasticity-based theory of the pathogenesis of Alzheimer’s disease. Ann N Y Acad Sci. 2000;924:42–52.PubMedCrossRefGoogle Scholar
  57. Morgan NV, Westaway SK, Morton JE, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38:752–4.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;6(314):130–3.CrossRefGoogle Scholar
  59. Niwa A, Matsuo K, Shindo A, Yata K, Shiraishi T, Tomimoto H. Clinical and neuropathological findings in a patient with familial Alzheimer disease showing a mutation in the PSEN1 gene. Neuropathology. 2013;33(2):199–203.PubMedCrossRefGoogle Scholar
  60. Ott A, Breteler MM, van Harskamp F, Claus JJ, van der Cammen TJ, Grobbee DE, Hofman A. Prevalence of Alzheimer’s disease and vascular dementia: association with education. The Rotterdam study. BMJ. 1995;310(6985):970–3.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Ozawa T, Paviour D, Quinn NP. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain. 2004;127:2657–71.PubMedCrossRefGoogle Scholar
  62. Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci. 1989;94:79–100.PubMedCrossRefGoogle Scholar
  63. Paulsen JS. Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep. 2011;11(5):474–83.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Pillon B, Deweer B, Agid Y, Dubois B. Explicit memory in Alzheimer’s, Huntington’s, and Parkinson’s diseases. Arch Neurol. 1993;50(4):374–9.PubMedCrossRefGoogle Scholar
  65. Paisan-Ruiz C, Bhatia KP, Li A, et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol. 2009;65:19–23.PubMedCrossRefGoogle Scholar
  66. Patel PI, Isaya G. Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency. Am J Hum Genet. 2001;69(1):15–24.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998;95:13363–83.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98.PubMedCrossRefGoogle Scholar
  69. Rüb U, Brunt ER, Deller T. New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol. 2008;21(2):111–6.PubMedCrossRefGoogle Scholar
  70. Saito Y, Ruberu NN, Sawabe M, Arai T, Tanaka N, Kakuta Y, Yama -nouchi H, Marayama S. Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol. 2004;63:911–8.PubMedGoogle Scholar
  71. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.PubMedGoogle Scholar
  72. Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.PubMedCrossRefGoogle Scholar
  74. Tierney M, Fisher R, Lewis A, Zorzitto M, Snow W, Reid D, Nieuwstraten P. The NINCDS-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer’s disease. Neurology. 1988;38:359–64.PubMedCrossRefGoogle Scholar
  75. Uchikado H, DelleDonne A, Ahmed Z, et al. Lewy bodies in progressive supranuclear palsy represent an independent disease process. J Neuropathol Exp Neurol. 2006;65:387–95.PubMedCrossRefGoogle Scholar
  76. Uchikado H, Tsuchiya K, Tominaga I, Togo T, Oshima K, Akiyama H, Ikeda K, Oda T, Hirayasu Y. Argyrophilic grain disease clinically mimicking Parkinson’s disease with dementia: report of an autopsy case. No To Shinkei. 2004;56(9):785–8.PubMedGoogle Scholar
  77. Valis M, Masopust J, Bažant J, et al. Cognitive changes in spinocerebellar ataxia type 2. Neuro Endocrinol Lett. 2011;32(3):354–9.PubMedGoogle Scholar
  78. van Slegtenhorst M, Lewis J, Hutton M. The molecular genetics of the tauopathies. Exp Gerontol. 2000;35(4):461–71.PubMedCrossRefGoogle Scholar
  79. Williams DR. Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J. 2006;36(10):652–60.PubMedCrossRefGoogle Scholar
  80. Yamazaki M, Arai Y, Baba M, et al. Alpha-synuclein inclusions in amygdala in the brains of patients with the parkinsonism-dementia complex of Guam. J Neuropathol Exp Neurol. 2000;59:585–91.PubMedGoogle Scholar
  81. Zaccai J, Brayne C, McKeith I, Matthews F, Ince PG, MRC Cognitive Function, Ageing Neuropathology Study. Patterns and stages of alpha-synucleinopathy: relevance in a population-based cohort. Neurology. 2008;70(13):1042–8.PubMedCrossRefGoogle Scholar
  82. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet. 2001;28(4):345–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI)Universidad Catolica ArgentinaBuenos AiresArgentina
  2. 2.Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina

Personalised recommendations