Advertisement

Blood Conservation in the Perioperative Setting

Chapter

Abstract

Children undergoing high blood loss surgical procedures face the same risks associated with transfusion as adults but must live with the sequelae of transfusion-related complications throughout a much longer life span. Avoidance of allogeneic blood transfusion can be accomplished with a team approach that relies on a thorough understanding of patient- and procedure-associated risk factors for bleeding, allowing patients who might benefit from a perioperative blood conservation strategy to be identified. The individual components of a multidisciplinary, multimodal blood conservation plan are discussed in this chapter. These elements include preoperative erythropoietin therapy, perioperative autologous blood collection (preoperative autologous donation, intraoperative hemodilution and cell salvage), antifibrinolytics, deliberate hypotension, and blood sparing surgical techniques. The adoption of lower transfusion triggers, institutional transfusion algorithms, and reduced blood sampling can result in fewer transfusions for all pediatric surgical patients.

Keywords

Blood conservation Blood transfusion, allogeneic Blood loss, surgical Blood transfusion, autologous Antifibrinolytic Hemodilution Transfusion triggers Transfusion, risks 

References

  1. 1.
    Glance LG, Dick AW, Mukamel DB, et al. Association between intraoperative blood transfusion and mortality and morbidity in patients undergoing noncardiac surgery. Anesthesiology. 2011;114(2):283–92.PubMedGoogle Scholar
  2. 2.
    Lavoie J. Blood transfusion risks and alternative strategies in pediatric patients. Paediatr Anaesth. 2011;21(1):14–24.PubMedGoogle Scholar
  3. 3.
    Vamvakas EC, Blajchman MA. Transfusion-related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood. 2009;113(15):3406–17.PubMedGoogle Scholar
  4. 4.
    Silliman CC, McLaughlin NJ. Transfusion-related acute lung injury. Blood Rev. 2006;20(3):139–59.PubMedGoogle Scholar
  5. 5.
    Vamvakas EC, Blajchman MA. Transfusion-related immunomodulation (TRIM): an update. Blood Rev. 2007;21(6):327–48.PubMedGoogle Scholar
  6. 6.
    Church GD, Price C, Sanchez R, Looney MR. Transfusion-related acute lung injury in the paediatric patient: two case reports and a review of the literature. Transfus Med. 2006;16(5):343–8.PubMedGoogle Scholar
  7. 7.
    Atzil S, Arad M, Glasner A, et al. Blood transfusion promotes cancer progression: a critical role for aged erythrocytes. Anesthesiology. 2008;109(6):989–97.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Koch CG, Li L, Sessler DI, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med. 2008;358(12):1229–39.PubMedGoogle Scholar
  9. 9.
    Barshtein G, Manny N, Yedgar S. Circulatory risk in the transfusion of red blood cells with impaired flow properties induced by storage. Transfus Med Rev. 2011;25(1):24–35.PubMedGoogle Scholar
  10. 10.
    Tsai AG, Cabrales P, Intaglietta M. Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion. 2004;44(11):1626–34.PubMedGoogle Scholar
  11. 11.
    Reynolds JD, Ahearn GS, Angelo M, Zhang J, Cobb F, Stamler JS. S-nitrosohemoglobin deficiency: a mechanism for loss of physiological activity in banked blood. Proc Natl Acad Sci U S A. 2007;104(43):17058–62.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Kiraly LN, Underwood S, Differding JA, Schreiber MA. Transfusion of aged packed red blood cells results in decreased tissue oxygenation in critically injured trauma patients. J Trauma. 2009;67(1):29–32.PubMedGoogle Scholar
  13. 13.
    Gauvin F, Spinella PC, Lacroix J, et al. Association between length of storage of transfused red blood cells and multiple organ dysfunction syndrome in pediatric intensive care patients. Transfusion. 2010;50(9):1902–13.PubMedGoogle Scholar
  14. 14.
    Edgren G, Kamper-Jorgensen M, Eloranta S, et al. Duration of red blood cell storage and survival of transfused patients (CME). Transfusion. 2010;50(6):1185–95.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Stainsby D, Jones H, Wells AW, Gibson B, Cohen H. Adverse outcomes of blood transfusion in children: analysis of UK reports to the serious hazards of transfusion scheme 1996–2005. Br J Haematol. 2008;141(1):73–9.PubMedGoogle Scholar
  16. 16.
    Stokes ME, Ye X, Shah M, et al. Impact of bleeding-related complications and/or blood product transfusions on hospital costs in inpatient surgical patients. BMC Health Serv Res. 2011;11:135.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Goodman AM, Pollack MM, Patel KM, Luban NL. Pediatric red blood cell transfusions increase resource use. J Pediatr. 2003;142(2):123–7.PubMedGoogle Scholar
  18. 18.
    Zou S, Musavi F, Notari EP, Fang CT. Changing age distribution of the blood donor population in the United States. Transfusion. 2008;48(2):251–7.PubMedGoogle Scholar
  19. 19.
    Bhananker SM, Ramamoorthy C, Geiduschek JM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105(2):344–50.PubMedGoogle Scholar
  20. 20.
    Flick RP, Sprung J, Harrison TE, et al. Perioperative cardiac arrests in children between 1988 and 2005 at a tertiary referral center: a study of 92,881 patients. Anesthesiology. 2007;106(2):226–37, quiz 413–4.PubMedGoogle Scholar
  21. 21.
    Hassan NE. Blood management in pediatric spinal deformity surgery: review of a 2-year experience. Transfusion. 2011;10:2133–41.Google Scholar
  22. 22.
    Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211–7; discussion 1217.PubMedGoogle Scholar
  23. 23.
    Cotton BA, Gunter OL, Isbell J, et al. Damage control hematology: the impact of a trauma exsanguination protocol on survival and blood product utilization. J Trauma. 2008;64(5):1177–82; discussion 1182–3.PubMedGoogle Scholar
  24. 24.
    Strauss RG. Transfusion therapy in neonates. Am J Dis Child. 1991;145(8):904–11.PubMedGoogle Scholar
  25. 25.
    Keung CY, Smith KR, Savoia HF, Davidson AJ. An audit of transfusion of red blood cell units in pediatric anesthesia. Paediatr Anaesth. 2009;19(4):320–8.PubMedGoogle Scholar
  26. 26.
    Guzzetta NA, Miller BE. Principles of hemostasis in children: models and maturation. Paediatr Anaesth. 2011;21(1):3–9.PubMedGoogle Scholar
  27. 27.
    Spinella PC, Dressler A, Tucci M, et al. Survey of transfusion policies at US and Canadian children’s hospitals in 2008 and 2009. Transfusion. 2010;50(11):2328–35.PubMedGoogle Scholar
  28. 28.
    Bird S, McGill N. Blood conservation and pain control in scoliosis corrective surgery: an online survey of UK practice. Paediatr Anaesth. 2011;21(1):50–3.PubMedGoogle Scholar
  29. 29.
    Jouffroy R, Baugnon T, Carli P, Orliaguet G. A survey of blood transfusion practice in French-speaking pediatric anesthesiologists. Paediatr Anaesth. 2011;21(4):385–93.PubMedGoogle Scholar
  30. 30.
    Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology. 2006;105(1):198–208.Google Scholar
  31. 31.
    Ferraris VA, Brown JR, Despotis GJ, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91(3):944–82.PubMedGoogle Scholar
  32. 32.
    Carson JL, Hill S, Carless P, Hebert P, Henry D. Transfusion triggers: a systematic review of the literature. Transfus Med Rev. 2002;16(3):187–99.PubMedGoogle Scholar
  33. 33.
    Hill SR, Carless PA, Henry DA, et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev. 2002;2:CD002042.PubMedGoogle Scholar
  34. 34.
    Hebert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.PubMedGoogle Scholar
  35. 35.
    Lacroix J, Hebert PC, Hutchison JS, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356(16):1609–19.PubMedGoogle Scholar
  36. 36.
    Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med. 2010;38(2):649–56.PubMedGoogle Scholar
  37. 37.
    Rouette J, Trottier H, Ducruet T, Beaunoyer M, Lacroix J, Tucci M. Red blood cell transfusion threshold in postsurgical pediatric intensive care patients: a randomized clinical trial. Ann Surg. 2010;251(3):421–7.PubMedGoogle Scholar
  38. 38.
    Bell EF, Strauss RG, Widness JA, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics. 2005;115(6):1685–91.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Kirpalani H, Whyte RK, Andersen C, et al. The Premature Infants in Need of Transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr. 2006;149(3):301–7.PubMedGoogle Scholar
  40. 40.
    Mallett SV, Peachey TD, Sanehi O, Hazlehurst G, Mehta A. Reducing red blood cell transfusion in elective surgical patients: the role of audit and practice guidelines. Anaesthesia. 2000;55(10):1013–9.PubMedGoogle Scholar
  41. 41.
    Ansari S, Szallasi A. Blood management by transfusion triggers: when less is more. Blood Transfus. 2011;4(1):1–6.Google Scholar
  42. 42.
    Stricker PA, Cladis FP, Fiadjoe JE, McCloskey JJ, Maxwell LG. Perioperative management of children undergoing craniofacial reconstruction surgery: a practice survey. Paediatr Anaesth. 2011;10:1026–35.Google Scholar
  43. 43.
    Baer VL, Henry E, Lambert DK, et al. Implementing a program to improve compliance with neonatal intensive care unit transfusion guidelines was accompanied by a reduction in transfusion rate: a pre-post analysis within a multihospital health care system. Transfusion. 2011;51(2):264–9.PubMedGoogle Scholar
  44. 44.
    Faberowski LW, Black S, Mickle JP. Blood loss and transfusion practice in the perioperative management of craniosynostosis repair. J Neurosurg Anesthesiol. 1999;11(3):167–72.PubMedGoogle Scholar
  45. 45.
    Stricker PA, Shaw TL, Desouza DG, et al. Blood loss, replacement, and associated morbidity in infants and children undergoing craniofacial surgery. Paediatr Anaesth. 2010;20(2):150–9.PubMedGoogle Scholar
  46. 46.
    Di Rocco C, Tamburrini G, Pietrini D. Blood sparing in craniosynostosis surgery. Semin Pediatr Neurol. 2004;11(4):278–87.PubMedGoogle Scholar
  47. 47.
    Barone CM, Jimenez DF. Endoscopic craniectomy for early correction of craniosynostosis. Plast Reconstr Surg. 1999;104(7):1965–73; discussion 1974–5.PubMedGoogle Scholar
  48. 48.
    Lauritzen C, Sugawara Y, Kocabalkan O, Olsson R. Spring mediated dynamic craniofacial reshaping. Case report. Scand J Plast Reconstr Surg Hand Surg. 1998;32(3):331–8.PubMedGoogle Scholar
  49. 49.
    Jimenez DF, Barone CM, Cartwright CC, Baker L. Early management of craniosynostosis using endoscopic-assisted strip craniectomies and cranial orthotic molding therapy. Pediatrics. 2002;110(1 Pt 1):97–104.PubMedGoogle Scholar
  50. 50.
    Meier PM, Goobie SM, DiNardo JA, Proctor MR, Zurakowski D, Soriano SG. Endoscopic strip craniectomy in early infancy: the initial five years of anesthesia experience. Anesth Analg. 2011;112(2):407–14.PubMedGoogle Scholar
  51. 51.
    Shah MN, Kane AA, Petersen JD, Woo AS, Naidoo SD, Smyth MD. Endoscopically assisted versus open repair of sagittal craniosynostosis: the St. Louis Children’s Hospital experience. J Neurosurg Pediatr. 2011;8(2):165–70.PubMedGoogle Scholar
  52. 52.
    Guimaraes-Ferreira J, Gewalli F, David L, Olsson R, Friede H, Lauritzen CG. Spring-mediated cranioplasty compared with the modified pi-plasty for sagittal synostosis. Scand J Plast Reconstr Surg Hand Surg. 2003;37(4):208–15.PubMedGoogle Scholar
  53. 53.
    Ririe DG, David LR, Glazier SS, Smith TE, Argenta LC. Surgical advancement influences perioperative care: a comparison of two surgical techniques for sagittal craniosynostosis repair. Anesth Analg. 2003;97(3):699–703.PubMedGoogle Scholar
  54. 54.
    Ririe DG, Smith TE, Wood BC, et al. Time-dependent perioperative anesthetic management and outcomes of the first 100 consecutive cases of spring-assisted surgery for sagittal craniosynostosis. Paediatr Anaesth. 2011;21:1015–9.Google Scholar
  55. 55.
    Levy JH, Dutton RP, Hemphill 3rd JC, et al. Multidisciplinary approach to the challenge of hemostasis. Anesth Analg. 2010;110(2):354–64.PubMedGoogle Scholar
  56. 56.
    Fergusson DA, Hebert PC, Mazer CD, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358(22):2319–31.PubMedGoogle Scholar
  57. 57.
    Tzortzopoulou A, Cepeda MS, Schumann R, Carr DB. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev. 2008;3:CD006883.PubMedGoogle Scholar
  58. 58.
    Schouten ES, van de Pol AC, Schouten AN, Turner NM, Jansen NJ, Bollen CW. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10(2):182–90.PubMedGoogle Scholar
  59. 59.
    Eaton MP. Antifibrinolytic therapy in surgery for congenital heart disease. Anesth Analg. 2008;106(4):1087–100.PubMedGoogle Scholar
  60. 60.
    Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2011;3:CD001886.PubMedGoogle Scholar
  61. 61.
    Breuer T, Martin K, Wilhelm M, et al. The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2009;35(1):167–71; author reply 171.PubMedGoogle Scholar
  62. 62.
    Martin K, Breuer T, Gertler R, et al. Tranexamic acid versus varepsilon-aminocaproic acid: efficacy and safety in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2011;39(6):892–7.PubMedGoogle Scholar
  63. 63.
    Martin K, Gertler R, Sterner A, et al. Comparison of blood-sparing efficacy of epsilon-aminocaproic acid and tranexamic acid in newborns undergoing cardiac surgery. Thorac Cardiovasc Surg. 2011;59(5):276–80.PubMedGoogle Scholar
  64. 64.
    Martin KGR, Liermann H, Mayr NP, Macguill M, Schreiber C, Vogt M, Tassani P, Wiesner G. Switch from aprotinin to {varepsilon}-aminocaproic acid: impact on blood loss, transfusion, and clinical outcome in neonates undergoing cardiac surgery. Br J Anaesth. 2011;107(6):934–9.PubMedGoogle Scholar
  65. 65.
    Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.PubMedGoogle Scholar
  66. 66.
    Dadure C, Sauter M, Bringuier S, et al. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology. 2011;114(4):856–61.PubMedGoogle Scholar
  67. 67.
    Goobie SM, Meier PM, Pereira LM, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114(4):862–71.PubMedGoogle Scholar
  68. 68.
    Martin K, Knorr J, Breuer T, et al. Seizures after open heart surgery: comparison of epsilon-aminocaproic acid and tranexamic acid. J Cardiothorac Vasc Anesth. 2011;25(1):20–5.PubMedGoogle Scholar
  69. 69.
    Keyl C, Uhl R, Beyersdorf F, et al. High-dose tranexamic acid is related to increased risk of generalized seizures after aortic valve replacement. Eur J Cardiothorac Surg. 2011;39(5):e114–21.PubMedGoogle Scholar
  70. 70.
    Lauder GR. Pre-operative predeposit autologous donation in children presenting for elective surgery: a review. Transfus Med. 2007;17(2):75–82.PubMedGoogle Scholar
  71. 71.
    Forgie MA, Wells PS, Laupacis A, Fergusson D. Preoperative autologous donation decreases allogeneic transfusion but increases exposure to all red blood cell transfusion: results of a meta-analysis. International Study of Perioperative Transfusion (ISPOT) Investigators. Arch Intern Med. 1998;158(6):610–6.PubMedGoogle Scholar
  72. 72.
    Henry DA, Carless PA, Moxey AJ, et al. Pre-operative autologous donation for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2002;2:CD003602.PubMedGoogle Scholar
  73. 73.
    Carless P, Moxey A, O’Connell D, Henry D. Autologous transfusion techniques: a systematic review of their efficacy. Transfus Med. 2004;14(2):123–44.PubMedGoogle Scholar
  74. 74.
    Rock G, Berger R, Bormanis J, et al. A review of nearly two decades in an autologous blood programme: the rise and fall of activity. Transfus Med. 2006;16(5):307–11.PubMedGoogle Scholar
  75. 75.
    Schved JF. Preoperative autologous blood donation: a therapy that needs to be scientifically evaluated. Transfus Clin Biol. 2005;12(5):365–9.PubMedGoogle Scholar
  76. 76.
    Singbartl G. Pre-operative autologous blood donation: clinical parameters and efficacy. Blood Transfus. 2011;9(1):10–8.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Murto KT, Splinter WM. Perioperative autologous blood donation in children. Transfus Sci. 1999;21(1):41–62.PubMedGoogle Scholar
  78. 78.
    Moran MM, Kroon D, Tredwell SJ, Wadsworth LD. The role of autologous blood transfusion in adolescents undergoing spinal surgery. Spine (Phila Pa 1976). 1995;20(5):532–6.Google Scholar
  79. 79.
    Letts M, Perng R, Luke B, Jarvis J, Lawton L, Hoey S. An analysis of a preoperative pediatric autologous blood donation program. Can J Surg. 2000;43(2):125–9.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Lo KS, Chow BF, Chan HT, Gunawardene S, Luk KD. An autologous blood donation program for paediatric scoliosis patients in Hong Kong. Anaesth Intensive Care. 2002;30(6):775–81.PubMedGoogle Scholar
  81. 81.
    Fukahara K, Murakami A, Ueda T, et al. Scheduled autologous blood donation at the time of cardiac catheterization in infants and children. J Thorac Cardiovasc Surg. 1997;114(3):504–5.PubMedGoogle Scholar
  82. 82.
    Masuda H, Moriyama Y, Hisatomi K, et al. Preoperative autologous donation of blood for a simple cardiac anomaly: analysis of children weighing under twenty kilograms. J Thorac Cardiovasc Surg. 2000;120(4):783–9.PubMedGoogle Scholar
  83. 83.
    Hibino N, Nagashima M, Sato H, Hori T, Ishitoya H, Tomino T. Preoperative autologous blood donation for cardiac surgery in children. Asian Cardiovasc Thorac Ann. 2008;16(1):21–4.PubMedGoogle Scholar
  84. 84.
    Velardi F, Di Chirico A, Di Rocco C, et al. “No allogeneic blood transfusion” protocol for the surgical correction of craniosynostoses – II. Clinical application. Child Nerv Syst. 1998;14(12):732–9.Google Scholar
  85. 85.
    Ashworth A, Klein AA. Cell salvage as part of a blood conservation strategy in anaesthesia. Br J Anaesth. 2010;105(4):401–16.PubMedGoogle Scholar
  86. 86.
    Carless PA, Henry DA, Moxey AJ, O’Connell D, Brown T, Fergusson DA. Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2010;4:CD001888.PubMedGoogle Scholar
  87. 87.
    Simpson MB, Georgopoulos G, Eilert RE. Intraoperative blood salvage in children and young adults undergoing spinal surgery with predeposited autologous blood: efficacy and cost effectiveness. J Pediatr Orthop. 1993;13(6):777–80.PubMedGoogle Scholar
  88. 88.
    Jimenez DF, Barone CM. Intraoperative autologous blood transfusion in the surgical correction of craniosynostosis. Neurosurgery. 1995;37(6):1075–9.PubMedGoogle Scholar
  89. 89.
    Dahmani S, Orliaguet GA, Meyer PG, Blanot S, Renier D, Carli PA. Perioperative blood salvage during surgical correction of craniosynostosis in infants. Br J Anaesth. 2000;85(4):550–5.PubMedGoogle Scholar
  90. 90.
    Fearon JA. Reducing allogenic blood transfusions during pediatric cranial vault surgical procedures: a prospective analysis of blood recycling. Plast Reconstr Surg. 2004;113(4):1126–30.PubMedGoogle Scholar
  91. 91.
    Golab HD, Scohy TV, de Jong PL, Takkenberg JJ, Bogers AJ. Intraoperative cell salvage in infants undergoing elective cardiac surgery: a prospective trial. Eur J Cardiothorac Surg. 2008;34(2):354–9.PubMedGoogle Scholar
  92. 92.
    Nicolai P, Leggetter PP, Glithero PR, Bhimarasetty CR. Autologous transfusion in acetabuloplasty in children. J Bone Joint Surg Br. 2004;86(1):110–2.PubMedGoogle Scholar
  93. 93.
    Munoz M, Garcia-Vallejo JJ, Ruiz MD, Romero R, Olalla E, Sebastian C. Transfusion of post-operative shed blood: laboratory characteristics and clinical utility. Eur Spine J. 2004;13 Suppl 1:S107–13.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Liumbruno GM, Waters JH. Unwashed shed blood: should we transfuse it? Blood Transfus. 2011;9(3):241–5.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Blevins FT, Shaw B, Valeri CR, Kasser J, Hall J. Reinfusion of shed blood after orthopaedic procedures in children and adolescents. J Bone Joint Surg Am. 1993;75(3):363–71.PubMedGoogle Scholar
  96. 96.
    Orliaguet GA, Bruyere M, Meyer PG, Blanot S, Renier D, Carli PA. Comparison of perioperative blood salvage and postoperative reinfusion of drained blood during surgical correction of craniosynostosis in infants. Paediatr Anaesth. 2003;13(9):797–804.PubMedGoogle Scholar
  97. 97.
    Paul JE, Ling E, Lalonde C, Thabane L. Deliberate hypotension in orthopedic surgery reduces blood loss and transfusion requirements: a meta-analysis of randomized controlled trials. Can J Anaesth. 2007;54(10):799–810.PubMedGoogle Scholar
  98. 98.
    Choi WS, Samman N. Risks and benefits of deliberate hypotension in anaesthesia: a systematic review. Int J Oral Maxillofac Surg. 2008;37(8):687–703.PubMedGoogle Scholar
  99. 99.
    Precious DS, Splinter W, Bosco D. Induced hypotensive anesthesia for adolescent orthognathic surgery patients. J Oral Maxillofac Surg. 1996;54(6):680–3; discussion 683–4.PubMedGoogle Scholar
  100. 100.
    Diaz JH, Lockhart CH. Hypotensive anesthesia for craniectomy in infancy. Brit J Anaesth. 1979;51(3):233–5.PubMedGoogle Scholar
  101. 101.
    Schaller Jr RT, Schaller J, Furman EB. The advantages of hemodilution anesthesia for major liver resection in children. J Pediatr Surg. 1984;19(6):705–10.PubMedGoogle Scholar
  102. 102.
    Schaller Jr RT, Schaller J, Morgan A, Furman EB. Hemodilution anesthesia: a valuable aid to major cancer surgery in children. Am J Surg. 1983;146(1):79–84.PubMedGoogle Scholar
  103. 103.
    Han SH, Bahk JH, Kim JH, et al. The effect of esmolol-induced controlled hypotension in combination with acute normovolemic hemodilution on cerebral oxygenation. Acta Anaesthesiol Scand. 2006;50(7):863–8.PubMedGoogle Scholar
  104. 104.
    Monk TG. Acute normovolemic hemodilution. Anesthesiol Clin N Am. 2005;23(2):271–81, vi.Google Scholar
  105. 105.
    Bryson GL, Laupacis A, Wells GA. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. The International Study of Perioperative Transfusion. Anesth Analg. 1998;86(1):9–15.PubMedGoogle Scholar
  106. 106.
    Segal JB, Blasco-Colmenares E, Norris EJ, Guallar E. Preoperative acute normovolemic hemodilution: a meta-analysis. Transfusion. 2004;44(5):632–44.PubMedGoogle Scholar
  107. 107.
    Fontana JL, Welborn L, Mongan PD, Sturm P, Martin G, Bunger R. Oxygen consumption and cardiovascular function in children during profound intraoperative normovolemic hemodilution. Anesth Analg. 1995;80(2):219–25.PubMedGoogle Scholar
  108. 108.
    Hassan AA, Lochbuehler H, Frey L, Messmer K. Global tissue oxygenation during normovolaemic haemodilution in young children. Paediatr Anaesth. 1997;7(3):197–204.Google Scholar
  109. 109.
    Desa VP, Bekassy AN, Schou H, Werner MU, Werner O. Hemodilution during bone-marrow harvesting in children. Anesth Analg. 1991;72(5):645–50.Google Scholar
  110. 110.
    Hans P, Collin V, Bonhomme V, Damas F, Born JD, Lamy M. Evaluation of acute normovolemic hemodilution for surgical repair of craniosynostosis. J Neurosurg Anesthesiol. 2000;12(1):33–6.PubMedGoogle Scholar
  111. 111.
    Du Toit G, Relton JE, Gillespie R. Acute haemodilutional autotransfusion in the surgical management of scoliosis. J Bone Joint Surg Br. 1978;60-B(2):178–80.PubMedGoogle Scholar
  112. 112.
    Olsfanger D, Jedeikin R, Metser U, Nusbacher J, Gepstein R. Acute normovolaemic haemodilution and idiopathic scoliosis surgery: effects on homologous blood requirements. Anaesth Intensive Care. 1993;21(4):429–31.PubMedGoogle Scholar
  113. 113.
    Vaniterson M, Vanderwaart FJM, Erdmann W, Trouwborst A. Systemic hemodynamics and oxygenation during hemodilution in children. Lancet. 1995;346(8983):1127–9.Google Scholar
  114. 114.
    Han SH, Kim CS, Kim SD, Bahk JH, Park YS. The effect of bloodless pump prime on cerebral oxygenation in paediatric patients. Acta Anaesthesiol Scand. 2004;48(5):648–52.PubMedGoogle Scholar
  115. 115.
    Singbartl K, Schleinzer W, Singbartl G. Hypervolemic hemodilution: an alternative to acute normovolemic hemodilution? A mathematical analysis. J Surg Res. 1999;86(2):206–12.PubMedGoogle Scholar
  116. 116.
    Mielke LL, Entholzner EK, Kling M, et al. Preoperative acute hypervolemic hemodilution with hydroxyethylstarch: an alternative to acute normovolemic hemodilution? Anesth Analg. 1997;84(1):26–30.PubMedGoogle Scholar
  117. 117.
    Kumar R, Chakraborty I, Sehgal R. A prospective randomized study comparing two techniques of perioperative blood conservation: isovolemic hemodilution and hypervolemic hemodilution. Anesth Analg. 2002;95(5):1154–61, table of contents.PubMedGoogle Scholar
  118. 118.
    Chen YQ, Chen Y, Ji CS, Gu HB, Bai J. Clinical observation of acute hypervolemic hemodilution in scoliosis surgery on children. Zhonghua Yi Xue Za Zhi. 2008;88(41):2901–3.PubMedGoogle Scholar
  119. 119.
    Goodnough LT, Rudnick S, Price TH, et al. Increased preoperative collection of autologous blood with recombinant human erythropoietin therapy. N Engl J Med. 1989;321(17):1163–8.PubMedGoogle Scholar
  120. 120.
    Goodnough LT, Monk TG, Andriole GL. Erythropoietin therapy. N Engl J Med. 1997;336(13):933–8.PubMedGoogle Scholar
  121. 121.
    Schiff SJ, Weinstein SL. Use of recombinant human erythropoietin to avoid blood transfusion in a Jehovah’s Witness requiring hemispherectomy. Case report. J Neurosurg. 1993;79(4):600–2.PubMedGoogle Scholar
  122. 122.
    Helfaer MA, Carson BS, James CS, Gates J, Della-Lana D, Vander Kolk C. Increased hematocrit and decreased transfusion requirements in children given erythropoietin before undergoing craniofacial surgery. J Neurosurg. 1998;88(4):704–8.PubMedGoogle Scholar
  123. 123.
    Vitale MG, Stazzone EJ, Gelijns AC, Moskowitz AJ, Roye Jr DP. The effectiveness of preoperative erythropoietin in averting allogenic blood transfusion among children undergoing scoliosis surgery. J Pediatr Orthop B. 1998;7(3):203–9.PubMedGoogle Scholar
  124. 124.
    Sonzogni V, Crupi G, Poma R, et al. Erythropoietin therapy and preoperative autologous blood donation in children undergoing open heart surgery. Br J Anaesth. 2001;87(3):429–34.PubMedGoogle Scholar
  125. 125.
    Komai H, Naito Y, Okamura Y, Fujiwara K, Suzuki H, Uemura S. Preliminary study of autologous blood predonation in pediatric open-heart surgery impact of advance infusion of recombinant human erythropoietin. Pediatr Cardiol. 2005;26(1):50–5.PubMedGoogle Scholar
  126. 126.
    Franchini M, Gandini G, Regis D, De Gironcoli M, Cantini M, Aprili G. Recombinant human erythropoietin facilitates autologous blood collections in children undergoing corrective spinal surgery. Transfusion. 2004;44(7):1122–4.PubMedGoogle Scholar
  127. 127.
    Krajewski K, Ashley RK, Pung N, et al. Successful blood conservation during craniosynostotic correction with dual therapy using procrit and cell saver. J Craniofac Surg. 2008;19(1):101–5.PubMedGoogle Scholar
  128. 128.
    Polley JW, Berkowitz RA, McDonald TB, Cohen M, Figueroa A, Penney DW. Craniomaxillofacial surgery in the Jehovah’s Witness patient. Plast Reconstr Surg. 1994;93(6):1258–63.PubMedGoogle Scholar
  129. 129.
    Meneghini L, Zadra N, Aneloni V, Metrangolo S, Faggin R, Giusti F. Erythropoietin therapy and acute preoperative normovolaemic haemodilution in infants undergoing craniosynostosis surgery. Paediatr Anaesth. 2003;13(5):392–6.PubMedGoogle Scholar
  130. 130.
    Henling CE, Carmichael MJ, Keats AS, Cooley DA. Cardiac operation for congenital heart disease in children of Jehovah’s Witnesses. J Thorac Cardiovasc Surg. 1985;89(6):914–20.PubMedGoogle Scholar
  131. 131.
    Ott DA, Cooley DA. Cardiovascular surgery in Jehovah’s Witnesses. Report of 542 operations without blood transfusion. JAMA. 1977;238(12):1256–8.PubMedGoogle Scholar
  132. 132.
    Rosengart TK, Helm RE, DeBois WJ, Garcia N, Krieger KH, Isom OW. Open heart operations without transfusion using a multimodality blood conservation strategy in 50 Jehovah’s witness patients: Implications for a “bloodless” surgical technique. J Am Coll Surgeons. 1997;184(6):618–29.Google Scholar
  133. 133.
    Neff TA, Stocker R, Wight E, Spahn DR. Extreme intraoperative blood loss and hemodilution in a Jehovah’s Witness: new aspects in postoperative management. Anesthesiology. 1999;91(6):1949–51.PubMedGoogle Scholar
  134. 134.
    Joseph Jr SA, Berekashvili K, Mariller MM, et al. Blood conservation techniques in spinal deformity surgery: a retrospective review of patients refusing blood transfusion. Spine (Phila Pa 1976). 2008;33(21):2310–5.Google Scholar
  135. 135.
    Lisander B, Jonsson R, Nordwall A. Combination of blood-saving methods decreases homologous blood requirements in scoliosis surgery. Anaesth Intensive Care. 1996;24(5):555–8.PubMedGoogle Scholar
  136. 136.
    Bateman ST, Lacroix J, Boven K, et al. Anemia, blood loss, and blood transfusions in North American children in the intensive care unit. Am J Respir Crit Care Med. 2008;178(1):26–33.PubMedGoogle Scholar
  137. 137.
    Munoz M, Garcia-Erce JA, Villar I, Thomas D. Blood conservation strategies in major orthopaedic surgery: efficacy, safety and European regulations. Vox Sang. 2009;96(1):1–13.PubMedGoogle Scholar
  138. 138.
    Tse EY, Cheung WY, Ng KF, Luk KD. Reducing perioperative blood loss and allogeneic blood transfusion in patients undergoing major spine surgery. J Bone Joint Surg Am. 2011;93(13):1268–77.PubMedGoogle Scholar
  139. 139.
    Hassan NE, Winters J, Winterhalter K, Reischman D, El-Borai Y. Effects of blood conservation on the incidence of anemia and transfusions in pediatric parapneumonic effusion: a hospitalist perspective. J Hosp Med. 2010;5(7):410–3.PubMedGoogle Scholar
  140. 140.
    Velardi F, Di Chirico A, Di Rocco C, et al. “No allogeneic blood transfusion” protocol for the surgical correction of craniosynostoses – I. Rationale. Child Nerv Syst. 1998;14(12):722–31.Google Scholar
  141. 141.
    Rohling RG, Haers PE, Zimmermann AP, Schanz U, Marquetand R, Sailer HF. Multimodal strategy for reduction of homologous transfusions in craniomaxillofacial surgery. Int J Oral Max Surg. 1999;28(2):137–42.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Anesthesiology and PediatricsDuke University HospitalDurhamUSA

Personalised recommendations