Skip to main content

Myocardial Protection

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

The concept of myocardial protection in congenital heart surgery has dramatically evolved over the last two decades. Pediatric clinical practice has largely been extrapolated from experiences with adult myocardial protection. These practice patterns did not account for the inherent anatomic and physiologic differences between adult and immature myocardium that can make immature myocardium more (reduced free radical scavenging, increased calcium sensitivity) or less (preference to glucose, high glycogen stores and low 5′ nucleotidase activity) susceptible to ischemia. Neonatal hearts are also equally or more susceptible to global ischemia when exposed to chronic volume and pressure overloading and chronic hypoxia. This chapter will discuss the physiology of neonatal and immature myocardium and summarize the most current research done in pediatric myocardial protection over the last 20 years regarding different cardioplegia solutions and additives, temperature and cardiopulmonary bypass strategy and reperfusion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bull C, Cooper J, Stark J. Cardioplegic protection of the child’s heart. J Thorac Cardiovasc Surg. 1984;88(2):287–93.

    CAS  PubMed  Google Scholar 

  2. Artman M, et al. Inotropic responses change during postnatal maturation in rabbit. Am J Physiol. 1988;255(2 Pt 2):H335–42.

    CAS  PubMed  Google Scholar 

  3. Hammon Jr JW. Myocardial protection in the immature heart. Ann Thorac Surg. 1995;60(3):839–42.

    Article  PubMed  Google Scholar 

  4. Yamamoto F, et al. Pediatric myocardial protection. From the aspect of the developmental status of myocardium. Ann N Y Acad Sci. 1996;793:355–65.

    Article  CAS  PubMed  Google Scholar 

  5. Doenst T, Schlensak C, Beyersdorf F. Cardioplegia in pediatric cardiac surgery: do we believe in magic? Ann Thorac Surg. 2003;75(5):1668–77.

    Article  PubMed  Google Scholar 

  6. Mavroudis C, Backer CL. Pediatric cardiac surgery. Philadelphia: Mosby; 2003.

    Google Scholar 

  7. Johnson MH, Everitt BJ. Essential reproduction. Oxford: Blackwell Pub; 2007.

    Google Scholar 

  8. Wittnich C, Belanger MP, Bandali KS. Newborn hearts are at greater ‘metabolic risk’ during global ischemia–advantages of continuous coronary washout. Can J Cardiol. 2007;23(3):195–200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Teoh KH, et al. Effect of oxygen tension and cardiovascular operations on the myocardial antioxidant enzyme activities in patients with tetralogy of Fallot and aorta-coronary bypass. J Thorac Cardiovasc Surg. 1992;104(1):159–64.

    CAS  PubMed  Google Scholar 

  10. Pridjian AK, et al. Developmental differences in myocardial protection in response to 5′-nucleotidase inhibition. J Thorac Cardiovasc Surg. 1994;107(2):520–6.

    CAS  PubMed  Google Scholar 

  11. Imura H, et al. Age-dependent and hypoxia-related differences in myocardial protection during pediatric open heart surgery. Circulation. 2001;103(11):1551–6.

    Article  CAS  PubMed  Google Scholar 

  12. Allen BS. Pediatric myocardial protection: a cardioplegic strategy is the “solution”. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:141–54.

    Article  PubMed  Google Scholar 

  13. Allen BS, Barth MJ, Ilbawi MN. Pediatric myocardial protection: an overview. Semin Thorac Cardiovasc Surg. 2001;13(1):56–72.

    CAS  PubMed  Google Scholar 

  14. Jonas RA, DiNardo JA. Comprehensive surgical management of congenital heart disease. London: Arnold; 2004.

    Book  Google Scholar 

  15. Sonnenblick EH, Ross Jr J, Braunwald E. Oxygen consumption of the heart. Newer concepts of its multifactoral determination. Am J Cardiol. 1968;22(3):328–36.

    Article  CAS  PubMed  Google Scholar 

  16. Durandy Y. Pediatric myocardial protection. Curr Opin Cardiol. 2008;23(2):85–90.

    Article  PubMed  Google Scholar 

  17. Mauney MC, Kron IL. The physiologic basis of warm cardioplegia. Ann Thorac Surg. 1995;60(3):819–23.

    Article  CAS  PubMed  Google Scholar 

  18. Buckberg GD. A proposed “solution” to the cardioplegic controversy. J Thorac Cardiovasc Surg. 1979;77(6):803–15.

    CAS  PubMed  Google Scholar 

  19. Guru V, et al. Is blood superior to crystalloid cardioplegia? A meta-analysis of randomized clinical trials. Circulation. 2006;114(1 Suppl):I331–8.

    PubMed  Google Scholar 

  20. Bolling K, et al. Myocardial protection in normal and hypoxically stressed neonatal hearts: the superiority of blood versus crystalloid cardioplegia. J Thorac Cardiovasc Surg. 1997;113(6):994–1003; discussion 1003–5.

    Article  CAS  PubMed  Google Scholar 

  21. Amark K, et al. Blood cardioplegia provides superior protection in infant cardiac surgery. Ann Thorac Surg. 2005;80(3):989–94.

    Article  PubMed  Google Scholar 

  22. Vittorini S, et al. Heat shock protein 70-1 gene expression in pediatric heart surgery using blood cardioplegia. Clin Chem Lab Med. 2007;45(2):244–8.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenkranz ER, et al. Benefits of normothermic induction of blood cardioplegia in energy-depleted hearts, with maintenance of arrest by multidose cold blood cardioplegic infusions. J Thorac Cardiovasc Surg. 1982;84(5):667–77.

    CAS  PubMed  Google Scholar 

  24. Caputo M, et al. The end of the cold era: from intermittent cold to intermittent warm blood cardioplegia. Eur J Cardiothorac Surg. 1998;14(5):467–75.

    Article  CAS  PubMed  Google Scholar 

  25. Durandy Y, Hulin S. Intermittent warm blood cardioplegia in the surgical treatment of congenital heart disease: clinical experience with 1400 cases. J Thorac Cardiovasc Surg. 2007;133(1):241–6.

    Article  PubMed  Google Scholar 

  26. Kronon MT, et al. The role of cardioplegia induction temperature and amino acid enrichment in neonatal myocardial protection. Ann Thorac Surg. 2000;70(3):756–64.

    Article  CAS  PubMed  Google Scholar 

  27. Follette DM, et al. Reducing postischemic damage by temporary modification of reperfusate calcium, potassium, pH, and osmolarity. J Thorac Cardiovasc Surg. 1981;82(2):221–38.

    CAS  PubMed  Google Scholar 

  28. Toyoda Y, et al. Cardioprotective effects and the mechanisms of terminal warm blood cardioplegia in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2003;125(6):1242–51.

    Article  PubMed  Google Scholar 

  29. Kronon M, et al. The relationship between calcium and magnesium in pediatric myocardial protection. J Thorac Cardiovasc Surg. 1997;114(6):1010–9.

    Article  CAS  PubMed  Google Scholar 

  30. Dobson GP. Membrane polarity: a target for myocardial protection and reduced inflammation in adult and pediatric cardiothoracic surgery. J Thorac Cardiovasc Surg. 2010;140(6):1213–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ji B, Liu J. Myocardial protection during heart surgery in China. Chin Med J (Engl). 2007;120(1):62–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aaron W. Eckhauser MD, MSCI or Thomas L. Spray MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Eckhauser, A.W., Spray, T.L. (2014). Myocardial Protection. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6359-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6359-6_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6358-9

  • Online ISBN: 978-1-4471-6359-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics