Skip to main content

Pharmacology of Inhalational and Intravenous Anesthetic Agents

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Varying depths of sedation through general anesthesia may be required in critically ill patients during surgical interventions, non-invasive procedures such as magnetic resonance imaging, or invasive procedures such as central line placement. During such procedures, a variety of agents may be chosen to provide the conditions required for a surgical procedure including amnesia, analgesia, muscle relaxation and control of the sympathetic nervous system. The agents used for the induction and maintenance of general anesthesia may be broadly classified into either inhalational (volatile) or intravenous agents. In addition to their use in the operating room for the provision of general anesthesia, both the intravenous and volatile agents may be used outside of the operating for either their sedative properties or even occasionally for their therapeutic effects. Examples include the use of propofol for sedation during magnetic resonance imaging, pentobarbital to control intracranial pressure (ICP) in patients with traumatic brain injury, or the administration of isoflurane for the treatment of status asthmaticus. The following chapter reviews the history, pharmacology, and end-organ effects of the inhalational and intravenous anesthetic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robbins J. Preliminary studies of the activity of fluorinated hydrocarbons. J Pharmacol Exp Ther. 1946;86:197–200.

    PubMed  CAS  Google Scholar 

  2. Krantz Jr JC, Carr J, Lu G, et al. Anesthesia: anesthetic action of trifluoroethyl vinyl ether. J Pharmacol Exp Ther. 1953;108:488–92.

    PubMed  CAS  Google Scholar 

  3. Tucker WK, Munson ES, Holaday DA, et al. Hepatorenal toxicity following fluroxene anesthesia. Anesthesiology. 1973;39:104–7.

    PubMed  CAS  Google Scholar 

  4. Johnston RR, Cromwell TH, Eger 2nd EI, et al. The toxicity of fluroxene in animals and man. Anesthesiology. 1973;38:313–9.

    PubMed  CAS  Google Scholar 

  5. Harris JA, Cromwell TH. Jaundice following fluroxene anesthesia. Anesthesiology. 1972;37:462–3.

    PubMed  CAS  Google Scholar 

  6. Raventos J. Action of fluothane – new volatile anesthetic. Br J Pharmacol. 1956;11:394–7.

    CAS  Google Scholar 

  7. Eger II EI, Bahlman S. Is end-tidal anesthetic partial pressure an accurate measure of the arterial anesthetic partial pressure? Anesthesiology. 1971;35:301–3.

    PubMed  Google Scholar 

  8. Le Dez K, Lerman J. The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology. 1987;67:301–7.

    Google Scholar 

  9. Gregory G, Eger 2nd EI, Munson ES. The relationship between age and halothane requirement in man. Anesthesiology. 1969;30:488–91.

    PubMed  CAS  Google Scholar 

  10. Eckenhoff R, Constant I, Seeman R, Murat I. Sevoflurane and epleptiform EEG changes. Pediatr Anesth. 2005;15:266–74.

    Google Scholar 

  11. Mirsattari SM, Sharpe MD, Young GB. Treatment of refractory status epilepticus with inhalational anesthetic agents isoflurane and desflurane. Arch Neurol. 2004;61:1254–9125.

    PubMed  Google Scholar 

  12. Hilz MJ, Bauer J, Claus D, Stefan H, Neundörfer B. Isoflurane anaesthesia in the treatment of convulsive status epilepticus. J Neurol. 1992;239:135–7.

    PubMed  CAS  Google Scholar 

  13. Sponheim S, Skraastad O, Helseth E, et al. Effects of 0.5 and 1.0 MAC isoflurane, sevoflurane and desflurane on intracranial and cerebral perfusion pressures in children. Acta Anaesthesiol Scand. 2003;47:932–8.

    PubMed  CAS  Google Scholar 

  14. Adams RW, Cucchiara RF, Gronert GA, Messick JM, Michenfelder JD. Isoflurane and cerebrospinal fluid pressure in neurosurgical patients. Anesthesiology. 1981;54:97–9.

    PubMed  CAS  Google Scholar 

  15. Drummond JC, Todd MM, Scheller MS, Shapiro HM. A comparison of the direct cerebral vasodilating potencies of halothane and isoflurane in the New Zealand White Rabbit. Anesthesiology. 1986;65:462–7.

    PubMed  CAS  Google Scholar 

  16. Morray JP, Geiduschek JM, Ramamoorthy C, et al. Anesthesia-related cardiac arrest in children: initial findings of the Pediatric Perioperative Cardiac Arrest (POCA) Registry. Anesthesiology. 2000;93:6–14.

    PubMed  CAS  Google Scholar 

  17. Roodman S, Bothwell M, Tobias JD. Bradycardia with sevoflurane induction in patients with trisomy 21. Paediatr Anaesth. 2003;13:538–40.

    PubMed  Google Scholar 

  18. Bai W, Voepel-Lewis T, Malviya S. Hemodynamic changes in children with Down syndrome during and following inhalation induction of anesthesia with sevoflurane. J Clin Anesth. 2010;22:592–7.

    PubMed  CAS  Google Scholar 

  19. Benumof JL, Augustine SD, Gibbons JA. Halothane and isoflurane only slightly impair arterial oxygenation during one lung ventilation in patients undergoing thoracotomy. Anesthesiology. 1987;67:910–5.

    PubMed  CAS  Google Scholar 

  20. Hirshman CA, Edelstein G, Peetz S, et al. Mechanism of action of inhalational anesthesia on airways. Anesthesiology. 1982;56:107–11.

    PubMed  CAS  Google Scholar 

  21. Watanabe K, Mizutani T, Yamashita S, Tatekawa Y, Jinbo T, Tanaka M. Prolonged sevoflurane inhalation therapy for status asthmaticus in an infant. Paediatr Anaesth. 2008;18:543–5.

    PubMed  Google Scholar 

  22. Tobias JD. Inhalational anesthesia for the treatment of status asthmaticus. J Intensive Care Med. 2009;24:361–71.

    PubMed  Google Scholar 

  23. Warner DO, Vettermann J, Brichant JF, et al. Direct and neurally mediated effects of halothane on pulmonary resistance in vivo. Anesthesiology. 1990;72:1057–63.

    PubMed  CAS  Google Scholar 

  24. Katoh T, Ikeda K. A comparison of sevoflurane with halothane, enflurane, and isoflurane on bronchoconstriction caused by histamine. Can J Anaesth. 1994;41:1214–9.

    PubMed  CAS  Google Scholar 

  25. Satoh H, Gillette JR, Takemura T, et al. Investigation of the immunological basis of halothane-induced hepatotoxicity. Adv Exp Med Biol. 1986;197:657–773.

    PubMed  CAS  Google Scholar 

  26. Kenna JG, Neuberger J, Williams R. Evidence for expression in human liver of halothane-induced neoantigens recognized by antibodies in sera from patients with halothane hepatitis. Hepatology. 1988;8:1635–41.

    PubMed  CAS  Google Scholar 

  27. Subcommittee on the National Halothane Study of the Committee on Anesthesia. Possible association between halothane anesthesia and postoperative hepatic necrosis. JAMA. 1966;197:775–88.

    Google Scholar 

  28. Kenna JG, Jones RM. The organ toxicity of inhaled anesthetics. Anesth Analg. 1995;81(suppl):S51–66.

    PubMed  CAS  Google Scholar 

  29. Brown Jr BR, Gandolfi AJ. Adverse effects of volatile anesthetics. Br J Anaesth. 1987;59:14–23.

    PubMed  CAS  Google Scholar 

  30. Pohl LR, Satoh H, Christ DD, et al. The immunologic and metabolic basis of drug hypersensitivities. Annu Rev Pharmacol. 1988;28:367–87.

    CAS  Google Scholar 

  31. Wark HJ. Postoperative jaundice in children - the influence of halothane. Anaesthesia. 1983;38:237–42.

    PubMed  CAS  Google Scholar 

  32. Warner LO, Beach TP, Garvin JP, et al. Halothane and children: the first quarter century. Anesth Analg. 1984;63:838–40.

    PubMed  CAS  Google Scholar 

  33. Mazze RI, Calverley RK, Smith NT. Inorganic fluoride nephrotoxicity: prolonged enflurane and halothane anesthesia in volunteers. Anesthesiology. 1977;46:265–71.

    PubMed  CAS  Google Scholar 

  34. Morio M, Fujii K, Satoh N, et al. Reaction of sevoflurane and its degradation products with soda lime. Toxicity of the byproducts. Anesthesiology. 1992;77:1155–64.

    PubMed  CAS  Google Scholar 

  35. Frink EJ Jr, Malan TP, Morgan SE, et al. Quantification of the degradation products of sevoflurane in two CO2 absorbents during low-flow anesthesia in surgical patients. 1992;77:1064–9.

    Google Scholar 

  36. Mazze RI. The safety of sevoflurane in humans. Anesthesiology. 1992;77:1062–6.

    PubMed  CAS  Google Scholar 

  37. Hevers W, Lüddens H. The diversity of GABA-A receptors. Pharmacological and electrophysiological properties of GABA-A channel subtypes. Mol Neurobiol. 1998;18:35–86.

    PubMed  CAS  Google Scholar 

  38. Concas A, Santoro G, Mascia MP, et al. The general anesthetic propofol enhances the function of alpha aminobutyric acid- coupled chloride channel in the rate cerebral cortex. J Neurochem. 1990;55:2135–40.

    PubMed  CAS  Google Scholar 

  39. Ho IK, Harris RA. Mechanism of action of barbiturates. Annu Rev Pharmacol Toxicol. 1981;21:83–111.

    PubMed  CAS  Google Scholar 

  40. Johnston GA, Willow M. GABA and barbiturate receptors. Trends Pharmacol Sci. 1982;3:328–30.

    CAS  Google Scholar 

  41. Olsen RW. Drug interactions at the GABA receptor-ionophore complex. Annu Rev Pharmacol Toxicol. 1982;22:245–77.

    PubMed  CAS  Google Scholar 

  42. MacDonald JF, Miljkovic Z, Pennefather P. Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J Neurophysiol. 1987;58:251–66.

    PubMed  CAS  Google Scholar 

  43. Mayer ML, Westbrook GL, Vyklicky L. Sites of antagonist action on N-methyl-d-aspartatic acid receptors studied using fluctuation analysis and a rapid perfusion technique. J Neurophysiol. 1988;60:645–63.

    PubMed  CAS  Google Scholar 

  44. Vincent JP, Cavey D, Kamenka JM, et al. Interaction of phencyclinidines with the muscarinic and opiate receptors in the central nervous system. Brain Res. 1978;152:176–82.

    PubMed  CAS  Google Scholar 

  45. Astrup J, Sorensen PM, Sorensen HR. Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital and lidocaine. Anesthesiology. 1981;55:263–8.

    PubMed  CAS  Google Scholar 

  46. Cormio M, Gopinath SP, Valadka A, et al. Cerebral hemodynamic effects of pentobarbital coma in head-injured patients. J Neurotrauma. 1999;16:927–36.

    PubMed  CAS  Google Scholar 

  47. Krishnamurthy KB, Drislane FW. Depth of EEG suppression and outcome in barbiturate anesthetic treatment for refractory status epilepticus. Epilepsia. 1999;40:759–62.

    PubMed  CAS  Google Scholar 

  48. Holmes GL, Riviello Jr JJ. Midazolam and pentobarbital for refractory status epilepticus. Pediatr Neurol. 1999;20:259–64.

    PubMed  CAS  Google Scholar 

  49. Ishimaru H, Takahashi A, Ikarashi Y, et al. Effects of MK-801 and pentobarbital on cholinergic terminal damage and delayed neuronal death in the ischemic gerbil hippocampus. Brain Res Bull. 1997;43:81–5.

    PubMed  CAS  Google Scholar 

  50. Morimoto Y, Morimoto Y, Nishihira J, et al. Pentobarbital inhibits apoptosis in neuronal cells. Crit Care Med. 2000;28:1899–904.

    PubMed  CAS  Google Scholar 

  51. Audenaert SM, Montgomery CL, Thompson DE, et al. A prospective study of rectal methohexital: efficacy and side effects in 648 cases. Anesth Analg. 1995;81:957–61.

    PubMed  CAS  Google Scholar 

  52. Nguyen MT, Greenburg SB, Fitzhugh KR, et al. Pediatric imaging: sedation with an injection formulation modified for rectal administration. Radiology. 2001;221:760–2.

    PubMed  CAS  Google Scholar 

  53. Alp H, Orbak Z, Guler I, et al. Efficacy and safety of rectal thiopental, intramuscular cocktail and rectal midazolam for sedation in children undergoing neuroimaging. Pediatr Int. 2002;44:628–34.

    PubMed  CAS  Google Scholar 

  54. Rubin JT, Towbin RB, Bartko M, Baskin KM, Cahill AM, Kaye RD. Oral and intravenous caffeine for treatment of children with post-sedation paradoxical hyperactivity. Pediatr Radiol. 2004;34:980–4.

    PubMed  Google Scholar 

  55. Kay B, Rolly G. I.C.I. 35868—the effect of a change of formulation on the incidence of pain after intravenous injection. Acta Anaesthesiol Belg. 1977;28:317–22.

    PubMed  CAS  Google Scholar 

  56. Bengalorkar GM, Bhuvana K, Sarala N, Kumar T. Fospropofol: clinical pharmacology. J Anaesthesiol Clin Pharmacol. 2011;27:79–83.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Sebel PS, Lowdon JD. Propofol: a new intravenous anesthetic. Anesthesiology. 1989;71:260–77.

    PubMed  CAS  Google Scholar 

  58. Harris CE, Grounds RM, Murray AM, et al. Propofol for long-term sedation in the intensive care unit. A comparison with papaveretum and midazolam. Anaesthesia. 1990;45:366–72.

    PubMed  CAS  Google Scholar 

  59. Beller JP, Pottecher T, Lugnier A, et al. Prolonged sedation with propofol in ICU patients: recovery and blood concentration changes during periodic interruption in infusion. Br J Anaesth. 1988;61:583–8.

    PubMed  CAS  Google Scholar 

  60. Ronan KP, Gallagher TJ, George B, Hamby B. Comparison of propofol and midazolam for sedation in intensive care unit patients. Crit Care Med. 1995;23:286–93.

    PubMed  CAS  Google Scholar 

  61. Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Hopkins K, Rowland M. Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14C-propofol. Xenobiotica. 1988;18:429–40.

    PubMed  CAS  Google Scholar 

  62. Veroli P, O’Kelly B, Bertrand F, et al. Extrahepatic metabolism of propofol in man during the anhepatic phase of orthotopic liver transplantation. Br J Anaesth. 1992;68:183–6.

    PubMed  CAS  Google Scholar 

  63. Tritapepe L, Voci P, Marino P, et al. Calcium chloride minimizes the hemodynamic effects of propofol in patients undergoing coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 1999;13:150–3.

    PubMed  CAS  Google Scholar 

  64. Sochala C, Van Deenen D, De Ville A, Govaerts MJM. Heart block following propofol in a child. Paediatr Anaesth. 1999;9:349–51.

    PubMed  CAS  Google Scholar 

  65. Egan TD, Brock-Utne JG. Asystole and anesthesia induction with a fentanyl, propofol, and succinylcholine sequence. Anesth Analg. 1991;73:818–20.

    PubMed  CAS  Google Scholar 

  66. Kannan S, Sherwood N. Termination of supraventricular tachycardia by propofol. Br J Anaesth. 2002;88:874–5.

    PubMed  CAS  Google Scholar 

  67. Eames WO, Rooke GA, Sai-Chuen R, Bishop MJ. Comparison of the effects of etomidate, propofol, and thiopental on respiratory resistance after tracheal intubation. Anesthesiology. 1996;84:1307–11.

    PubMed  CAS  Google Scholar 

  68. Pizov R, Brown RH, Weiss YS, et al. Wheezing during induction of general anesthesia in patients with and without asthma. A randomized, blinded trial. Anesthesiology. 1995;82:1111–6.

    PubMed  CAS  Google Scholar 

  69. Chih-Chung L, Ming-Hwang S, Tan PPC, et al. Mechanisms underlying the inhibitory effect of propofol on the contraction of canine airway smooth muscle. Anesthesiology. 1999;91:750–9.

    Google Scholar 

  70. Pedersen CM, Thirstrup S, Nielsen-Kudsk JE. Smooth muscle relaxant effects of propofol and ketamine in isolated guinea-pig tracheas. Eur J Pharmacol. 1993;238:75–80.

    PubMed  CAS  Google Scholar 

  71. Brown RH, Greenberg RS, Wagner EM. Efficacy of propofol to prevent bronchoconstriction. Anesthesiology. 2001;94:851–5.

    PubMed  CAS  Google Scholar 

  72. Rieschke P, LeFleur BJ, Janicki PK. Effects of EDTA and sulfite-containing formulations of propofol on respiratory system resistance after tracheal intubation in smokers. Anesthesiology. 2003;98:323–8.

    PubMed  CAS  Google Scholar 

  73. Hemelrijck JV, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71:49–54.

    PubMed  Google Scholar 

  74. Nimkoff L, Quinn C, Silver P, Sagy M. The effects of intravenous anesthetic agents on intracranial pressure and cerebral perfusion pressure in two feline models of brain edema. J Crit Care. 1997;12:132–6.

    PubMed  CAS  Google Scholar 

  75. Watts ADJ, Eliasziw M, Gelb AW. Propofol and hyperventilation for the treatment of increased intracranial pressure in rabbits. Anesth Analg. 1998;87:564–8.

    PubMed  CAS  Google Scholar 

  76. Herregods L, Verbeke J, Rolly G, Colardyn F. Effect of propofol on elevated intracranial pressure. Preliminary results. Anaesthesia. 1988;43(suppl):107–9.

    PubMed  Google Scholar 

  77. Pinaud M, Lelausque J, Chetanneau A, Fauchoux N, Menegalli D, Souron R. Effects of propofol on cerebral hemodynamics and metabolism in patients with brain trauma. Anesthesiology. 1990;73:404–9.

    PubMed  CAS  Google Scholar 

  78. Mangez JF, Menguy E, Roux P. Sedation par propofol a debit constant chez le traumatise cranien. Resultas preliminaires. Ann Fr Anesth Reanim. 1987;6:336–7.

    PubMed  CAS  Google Scholar 

  79. Ravussin P, Guinard JP, Ralley F, Thorin D. Effect of propofol on cerebrospinal fluid pressure and cerebral perfusion pressure in patients undergoing craniotomy. Anaesthesia. 1988;43(suppl):107–9.

    Google Scholar 

  80. Farling PA, Johnston JR, Coppel DL. Propofol infusion for sedation of patients with head injury in intensive care. Anaesthesia. 1989;44:222–6.

    PubMed  CAS  Google Scholar 

  81. Yamaguchi S, Midorikawa Y, Okuda Y, et al. Propofol prevents delayed neuronal death following transient forebrain ischemia in gerbils. Can J Anaesth. 1999;46:593–8.

    PubMed  CAS  Google Scholar 

  82. Young Y, Menon DK, Tisavipat N, et al. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anesthesiol. 1997;14:320–6.

    CAS  Google Scholar 

  83. Fox J, Gelb AW, Enns J, et al. The responsiveness of cerebral blood flow to changes in arterial carbon dioxide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology. 1992;77:453–6.

    PubMed  CAS  Google Scholar 

  84. Trotter C, Serpell MG. Neurological sequelae in children after prolonged propofol infusions. Anaesthesia. 1992;47:340–2.

    PubMed  CAS  Google Scholar 

  85. Saunders PRI, Harris MNE. Opisthotonic posturing and other unusual neurological sequelae after outpatient anesthesia. Anaesthesia. 1992;47:552–7.

    Google Scholar 

  86. Finley GA, MacManus B, Sampson SE, Fernandez CV, Retallick I. Delayed seizures following sedation with propofol. Can J Anaesth. 1993;40:863–5.

    PubMed  CAS  Google Scholar 

  87. Hewitt PB, Chu DLK, Polkey CE, Binnie CD. Effect of propofol on the electrocorticogram in epileptic patients undergoing cortical resection. Br J Anaesth. 1999;82:199–202.

    PubMed  CAS  Google Scholar 

  88. McBurney JW, Teiken PJ, Moon MR. Propofol for treating status epilepticus. J Epilepsy. 1994;7:21–2.

    Google Scholar 

  89. Lowenstein DH, Alldredge BK. Status epilepticus. New Engl J Med. 1998;338:970–6.

    PubMed  CAS  Google Scholar 

  90. Laxenaire MC, Mata-Bermejo E, Moneret-Vautrin DA, Gueant JL. Life-threatening anaphylactoid reactions to propofol. Anesthesiology. 1992;77:275–80.

    PubMed  CAS  Google Scholar 

  91. Gottardis M, Khunl-Brady KS, Koller W, et al. Effect of prolonged sedation with propofol on serum triglyceride and cholesterol concentrations. Br J Anaesth. 1989;62:393–6.

    PubMed  CAS  Google Scholar 

  92. Murphy A, Campbell DE, Baines D, Mehr S. Allergic reactions to propofol in egg-allergic children. Anesth Analg. 2011;113:140–4.

    PubMed  CAS  Google Scholar 

  93. Griffin J, Ray T, Gray B, et al. Pain on injection of propofol: a thiopental/propofol mixture versus a lidocaine/propofol mixture. Am J Pain Manag. 2002;12:45–9.

    Google Scholar 

  94. Tobias JD. Prevention of pain associated with the administration of propofol in children: lidocaine versus ketamine. Am J Anesthesiol. 1996;23:231–2.

    Google Scholar 

  95. Picard P, Tramer MR. Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg. 2000;90:963–9.

    PubMed  CAS  Google Scholar 

  96. Mangar D, Holak EJ. Tourniquet at 50 mmHg followed by intravenous lidocaine diminishes hand pain associated with propofol injection. Anesth Analg. 1992;74:250–2.

    PubMed  CAS  Google Scholar 

  97. Haugen RD, Vaghadia H, Waters T, Merick PM. Thiopentone pretreatment for propofol injection pain in ambulatory patients. Can J Anaesth. 1993;42:1108–12.

    Google Scholar 

  98. Sosis MB, Braverman B. Growth of Staphylococcus aureus in four intravenous anesthetics. Anesth Analg. 1993;77:766–8.

    PubMed  CAS  Google Scholar 

  99. Postsurgical infections associated with extrinsically contaminated intravenous anesthetic agent – California, Illinois, Maine, and Michigan, 1990. MMWR 1990;39:426–427, 433.

    Google Scholar 

  100. Fassoulaki A, Paraskeva A, Papilas K, Patris K. Hypnotic and cardiovascular effects of proprietary and generic propofol formulations do not differ. Can J Anaesth. 2001;48:459–61.

    PubMed  CAS  Google Scholar 

  101. Parke TJ, Stevens JE, Rice ASC, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. Br Med J. 1992;305:613–6.

    CAS  Google Scholar 

  102. Strickland RA, Murray MJ. Fatal metabolic acidosis in a pediatric patient receiving an infusion of propofol in the intensive care unit: is there a relationship? Crit Care Med. 1995;23:405–9.

    PubMed  CAS  Google Scholar 

  103. Hanna JP, Ramundo ML. Rhabdomyolysis and hypoxia associated with prolonged propofol infusion. Neurology. 1998;50:301–3.

    PubMed  CAS  Google Scholar 

  104. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8:491–9.

    PubMed  CAS  Google Scholar 

  105. Spitzfadden AC, Jimenez DF, Tobias JD. Propofol for sedation and control of intracranial pressure in children. Pediatr Neurosurg. 1999;31:194–200.

    Google Scholar 

  106. Cremer OL, Bouman EAC, Kruijswijk JE, et al. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2000;357:117–8.

    Google Scholar 

  107. Perrier ND, Baerga-Varela Y, Murray M. Death related to propofol use in an adult. Crit Care Med. 2000;28:3071–4.

    PubMed  CAS  Google Scholar 

  108. Schenkman KA, Yan S. Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med. 2000;28:172–7.

    PubMed  CAS  Google Scholar 

  109. Wolf A, Weir P, Segar P, et al. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001;357:606–7.

    PubMed  CAS  Google Scholar 

  110. Withington DE, Decell MK, Al Ayed T. A case of propofol toxicity: further evidence for a causal mechanism. Pediatr Anesth. 2004;14:505–8.

    Google Scholar 

  111. Cravens GT, Pcker DL, Johnson ME. Incidence of propofol infusion syndrome during noninvasive radiofrequency ablation for atrial flutter or fibrillation. Anesthesiology. 2007;106:1134–8.

    PubMed  CAS  Google Scholar 

  112. Domino EF, Chodoff P, Corssen G. Pharmacologic effects of CI-581, a new dissociative anesthetic in man. Clin Pharmacol Ther. 1965;6:279–91.

    PubMed  CAS  Google Scholar 

  113. Tobias JD. End-tidal carbon dioxide monitoring during sedation with a combination of midazolam and ketamine for children undergoing painful, invasive procedures. Pediatr Emerg Care. 1999;15:173–5.

    PubMed  CAS  Google Scholar 

  114. Chernow B, Laker R, Creuss D, et al. Plasma, urine, and cerebrospinal fluid catecholamine concentrations during and after ketamine sedation. Crit Care Med. 1982;10:600–3.

    PubMed  CAS  Google Scholar 

  115. Wayman K, Shoemaker WC, Lippmann M. Cardiovascular effects of anesthetic induction with ketamine. Anesth Analg. 1980;59:355–8.

    Google Scholar 

  116. Spotoft H, Korshin JD, Sorensen MB, et al. The cardiovascular effects of ketamine used for induction of anesthesia in patients with valvular heart disease. Can Anaesth Soc J. 1979;26:463–7.

    PubMed  CAS  Google Scholar 

  117. Adriaenssens G, Vermeyen KM, Hoffmann VLH, Mertens E, Adriaensen HF. Postoperative analgesia with iv patient-controlled morphine: effect of adding ketamine. Br J Anaesth. 1999;83:393–6.

    PubMed  CAS  Google Scholar 

  118. Jahangir SM, Islam F, Aziz L. Ketamine infusion for postoperative analgesia in asthmatics: comparison with intermittent meperidine. Anesth Analg. 1993;76:45–9.

    PubMed  CAS  Google Scholar 

  119. Himmelseher S, Durieux ME. Ketamine for perioperative pain management. Anesthesiology. 2005;102:211–20.

    PubMed  Google Scholar 

  120. Lahtinen P, Kokki H, Hakala T, et al. S(+) ketamine as an analgesic adjunct reduces opioid consumption after cardiac surgery. Anesth Analg. 2004;99:1295–301.

    PubMed  CAS  Google Scholar 

  121. Engelhardt T, Zaarour C, Naser B, Pehora C, de Ruiter J, Howard A, Crawford MW. Intraoperative low-dose ketamine does not prevent a remifentanil-induced increase in morphine requirement after pediatric scoliosis surgery. Anesth Analg. 2008;107:1170–5.

    PubMed  CAS  Google Scholar 

  122. Mankikian B, Cantineau JP, Sartene R, et al. Ventilatory and chest wall mechanics during ketamine anesthesia in humans. Anesthesiology. 1986;65:492–9.

    PubMed  CAS  Google Scholar 

  123. Von Ungern-Sternberg BS, Regli A, Frei FJ, et al. A deeper level of ketamine anesthesia does not affect functional residual capacity and ventilation distribution in healthy preschool children. Pediatr Anesth. 2007;17:1150–5.

    Google Scholar 

  124. Hirshman CA, Downes H, Farbood A, Bergman NA. Ketamine block of bronchospasm in experimental canine asthma. Br J Anaesth. 1979;51:713–8.

    PubMed  CAS  Google Scholar 

  125. Bourke DL, Malit LA, Smith TC. Respiratory interactions of ketamine and morphine. Anesthesiology. 1987;66:153–6.

    PubMed  CAS  Google Scholar 

  126. Lanning CF, Harmel MH. Ketamine anesthesia. Annu Rev Med. 1975;26:137–41.

    PubMed  CAS  Google Scholar 

  127. Taylor PA, Towey RM. Depression of laryngeal reflexes during ketamine administration. Br Med J. 1971;2:688–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Marhofer P, Freitag H, Hochtl A, et al. S(+) ketamine for rectal premedication in children. Anesth Analg. 2001;92:62–5.

    PubMed  CAS  Google Scholar 

  129. Weksler N, Ovadia L, Muati G, et al. Nasal ketamine for paediatric premedication. Can J Anaesth. 1993;40:119–21.

    PubMed  CAS  Google Scholar 

  130. Weber F, Wulf H, el Saeidi G. Premedication with nasal s-ketamine and midazolam provides good conditions for induction of anaesthesia in preschool children. Can J Anaesth. 2003;50:470–5.

    PubMed  Google Scholar 

  131. Koinig H, Marhoger P. S(+) ketamine in paediatric anaesthesia. Paediatr Anaesth. 2003;13:185–7.

    PubMed  CAS  Google Scholar 

  132. Gooding JM, Dimick AR, Travakoli M, et al. A Physiologic analysis of cardiopulmonary responses to ketamine anesthesia in non-cardiac patients. Anesth Analg. 1977;56:813–6.

    PubMed  CAS  Google Scholar 

  133. Morray JP, Lynn AM, Stamm SJ, et al. Hemodynamic effects of ketamine in children with congenital heart disease. Anesth Analg. 1984;63:895–9.

    PubMed  CAS  Google Scholar 

  134. Hickey PR, Hansen DD, Cramolini GM, et al. Pulmonary and systemic hemodynamic responses to ketamine in infants with normal and elevated pulmonary vascular resistance. Anesthesiology. 1985;62:287–93.

    PubMed  CAS  Google Scholar 

  135. Wolfe RR, Loehr JP, Schaffer MS, Wiffins Jr JW. Hemodynamic effects of ketamine, hypoxia, and hyperoxia in children with surgically treated congenital heart disease residing ≥1,200 meters above sea level. Am J Cardiol. 1991;67:84–7.

    PubMed  CAS  Google Scholar 

  136. Williams GD, Philip BM, Chu LF, et al. Ketamine does not increase pulmonary vascular resistance in children with pulmonary hypertension undergoing sevoflurane anesthesia and spontaneous ventilation. Anesth Analg. 2007;105:1578–84.

    PubMed  CAS  Google Scholar 

  137. Singh A, Girotra S, Mehta Y, Radhakrishnan S, Shrivastava S. Total intravenous anesthesia with ketamine for pediatric interventional cardiac procedures. J Cardiothorac Vasc Anesth. 2000;14:36–9.

    PubMed  Google Scholar 

  138. Lebovic S, Reich DL, Steinberg G, Vela FP, Silvay G. Comparison of propofol versus ketamine for anesthesia in pediatric patients undergoing cardiac catheterization. Anesth Analg. 1992;74:490–4.

    PubMed  CAS  Google Scholar 

  139. Shapiro HM, Wyte SR, Harris AB. Ketamine anesthesia in patients with intracranial pathology. Br J Anaesth. 1972;44:1200–4.

    Google Scholar 

  140. Gardner AE, Dannemiller FJ, Dean D. Intracranial cerebrospinal fluid pressure in man during ketamine anesthesia. Anesth Analg. 1972;51:741–5.

    PubMed  CAS  Google Scholar 

  141. Reicher D, Bhalla P, Rubinstein EH. Cholinergic cerebral vasodilator effects of ketamine in rabbits. Stroke. 1987;18:445–9.

    PubMed  CAS  Google Scholar 

  142. Oren RE, Rasool NA, Rubinstein EH. Effect of ketamine on cerebral cortical blood flow and metabolism in rabbits. Stroke. 1987;18:441–4.

    PubMed  CAS  Google Scholar 

  143. Pfenninger E, Dick W, Ahnefeld FW. The influence of ketamine on both the normal and raised intracranial pressure of artificially ventilated animals. Eur J Anaesthesiol. 1985;2:297–307.

    PubMed  CAS  Google Scholar 

  144. Pfenninger E, Grunert A, Bowdler I, Kilian J. The effect of ketamine on intracranial pressure during haemorrhagic shock under the conditions of both spontaneous breathing and controlled ventilation. Acta Neurochir. 1985;78:113–8.

    PubMed  CAS  Google Scholar 

  145. Albanese J, Arnaud S, REy M, et al. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology. 1997;87:1328–34.

    PubMed  CAS  Google Scholar 

  146. Bourgoin A, Albanese J, Wereszczynski N, Charbit M, Vialet R, Martin C. Safety of sedation with ketamine in severe head injury patients: comparison with sufentanil. Crit Care Med. 2003;31:711–7.

    PubMed  CAS  Google Scholar 

  147. Bar-Joseph G, Guilburd Y, Tamir A, Guilburd JN. Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension. J Neurosurg Pediatr. 2009;4:40–6.

    PubMed  Google Scholar 

  148. Mayberg TS, Lam AM, Matta BF, Domino KB, Winn R. Ketamine does not increase cerebral blood flow velocity of intracranial pressure during isoflurane/nitrous oxide anesthesia in patients undergoing craniotomy. Anesth Analg. 1995;81:84–9.

    PubMed  CAS  Google Scholar 

  149. Rosen I, Hagerdal M. Electroencephalographic study of children during ketamine anesthesia. Acta Anaesthesiol Scand. 1976;20:32–9.

    PubMed  CAS  Google Scholar 

  150. Manohar S, Maxwell D, Winters WD. Development of EEG seizure activity during and after chronic ketamine administration in the rat. Neuropharmacology. 1972;11:819–26.

    PubMed  CAS  Google Scholar 

  151. Bourn WM, Yang DJ, Davisson JN. Effect of ketamine enantiomers on sound-induced convulsions in epilepsy prone rats. Pharmacol Res Commun. 1983;15:815–24.

    PubMed  CAS  Google Scholar 

  152. Veliskova J, Velisek L, Mares P, Rokyta R. Ketamine suppresses both bicuculline and picrotoxin induced generalized tonic clonic seizures during ontogenesis. Pharmacol Biochem Behav. 1990;37:667–74.

    PubMed  CAS  Google Scholar 

  153. Sheth RD, Gidal BE. Refractory status epilepticus: response to ketamine. Neurology. 1998;51:1765–6.

    PubMed  CAS  Google Scholar 

  154. Sfez M, Le Mapihan Y, Levron JC, Gaillard JL, Rosemblatt JM, Le Moing JP. Comparison of the pharmacokinetics of etomidate in children and adults. Ann Fr Anesth Reanim. 1990;9:127–31.

    PubMed  CAS  Google Scholar 

  155. Brussel T, Theissen JL, Vigfusson G, et al. Hemodynamic and cardiodynamic effects of propofol and etomidate: negative inotropic properties of propofol. Anesth Analg. 1989;69:35–40.

    PubMed  CAS  Google Scholar 

  156. Lehman KA, Mainka F. Ventilatory CO2-response after alfentanil and sedative premedication (etomidate, diazepam, and droperidol): a comparative study with human volunteers. Acta Anaesthesiol Belg. 1986;37:3–13.

    Google Scholar 

  157. Choi SD, Spaulding BC, Gross JB, Apfelbaum JL. Comparison of the ventilatory effects of etomidate and methohexital. Anesthesiology. 1985;62:442–7.

    PubMed  CAS  Google Scholar 

  158. Giese JL, Stockham RJ, Stanley TH, et al. Etomidate versus thiopental for induction of anesthesia. Anesth Analg. 1985;64:871–6.

    PubMed  CAS  Google Scholar 

  159. Morgan M, Lumley J, Whitwam JG. Respiratory effects of etomidate. Br J Anaesth. 1977;49:233–6.

    PubMed  CAS  Google Scholar 

  160. Renou AM, Vernhiet J, Macrez P, et al. Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth. 1978;50:1047–51; Moss E, Powell D, Gibson RM, McDowall DG. Effect of etomidate on intracranial pressure and cerebral perfusion pressure. Br J Anaesth. 1979;51:347–52.

    Google Scholar 

  161. Modica PA, Tempellhoff R. Intracranial pressure during induction of anesthesia and tracheal intubation with etomidate-induced EEG burst suppression. Can J Anaesth. 1992;39:236–41.

    PubMed  CAS  Google Scholar 

  162. Gancher S, Laxer KD, Krieger W. Activation of epileptogenic activity by etomidate. Anesthesiology. 1984;61:616–8.

    PubMed  CAS  Google Scholar 

  163. Ebrahim ZY, DeBoer GE, Luders H, Hahn JF, Lesser RP. Effect of etomidate on the electroencephalogram of patients with epilepsy. Anesth Analg. 1986;65:1004–6.

    PubMed  CAS  Google Scholar 

  164. Ghoneim MM, Yamada T. Etomidate: a clinical and electroencephalographic comparison with thiopental. Anesth Analg. 1977;56:479–85.

    PubMed  CAS  Google Scholar 

  165. Doenicke AW, Roizen MF, Kugler J, Kroll H, Foss J, Ostwald P. Reducing myoclonus after etomidate. Anesthesiology. 1999;90:113–9.

    PubMed  CAS  Google Scholar 

  166. Patel A, Dallas SH. A trial of etomidate infusion anaesthesia for computerized axial tomography (letter). Anaesthesia. 1981;36:63.

    Google Scholar 

  167. Kay B. A clinical assessment of the use of etomidate in children. Br J Anaesth. 1976;48:207–10.

    PubMed  CAS  Google Scholar 

  168. Schechter WS, Kim C, Martinez M, Gleason BF, Lund DP, Burrows FA. Anaesthetic induction in a child with end-stage cardiomyopathy. Can J Anaesth. 1995;42:404–8.

    PubMed  CAS  Google Scholar 

  169. Tobias JD. Etomidate: applications in pediatric anesthesia and critical care. J Intensive Care Med. 1997;12:324–6.

    Google Scholar 

  170. Ching KY, Baum CR. Newer agents for rapid sequence intubation: etomidate and rocuronium. Pediatr Emerg Care. 2009;25:200–7.

    PubMed  Google Scholar 

  171. Wagner RL, White PF, Kan PB, et al. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med. 1984;310:1415–8.

    PubMed  CAS  Google Scholar 

  172. Annane D. ICU physicians should abandon the use of etomidate. Intensive Care Med. 2005;31:325–6.

    PubMed  Google Scholar 

  173. Cotton BA, Guillamondegui OD, Fleming SB, et al. Increased risk of adrenal insufficiency following etomidate exposure in critically injured patients. Arch Surg. 2008;143:62–7.

    PubMed  Google Scholar 

  174. Markowitz BP. The drug that would not die (though patients receiving it do)(editorial). Pediatr Crit Care Med. 2009;10:418–9.

    Google Scholar 

  175. Duthie DJR, Fraser R, Nimmo WS. Effect of induction of anaesthesia with etomidate on corticosteroid synthesis in man. Br J Anaesth. 1985;57:156–9.

    PubMed  CAS  Google Scholar 

  176. Donmez A, Kaya H, Haberal A, Kutsal A, Arslan G. The effect of etomidate induction on plasma cortisol levels in children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1998;12:182–5.

    PubMed  CAS  Google Scholar 

  177. Absalom A, Pledger D, Kong A. Adrenocortical function in critically ill patients 24 hour after a single dose of etomidate. Anaesthesia. 1999;54:861–7.

    PubMed  CAS  Google Scholar 

  178. Vinclair M, Broux C, Faure P, et al. Duration of adrenal inhibition following a single dose of etomidate in critically ill patients. Intensive Care Med. 2008;34:714–9.

    PubMed  Google Scholar 

  179. Ray DC, McKeown DW. Effect of induction agent on vasopressor and steroid use, and outcome in patients with septic shock. Crit Care. 2007;11:145–7.

    Google Scholar 

  180. Sprung CL, Annane D, Keh D, et al. CORTICUS study group: hydrocortisone therapy for patients with septic shock. JAMA. 2002;288:862–71.

    Google Scholar 

  181. Brierley J, Carcillo JA, Choong K, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.

    PubMed  Google Scholar 

  182. Tobias JD. Airway management in the pediatric trauma patient. J Intensive Care Med. 1998;13:1–14.

    Google Scholar 

  183. Selander D, Curelaru I, Stefansson T. Local discomfort and thrombophlebitis following intravenous injection of diazepam. A comparison between a glycerol-water solution and a lipid emulsion. Acta Anaesthesiol Scand. 1981;25:516–8.

    PubMed  CAS  Google Scholar 

  184. Forrest P, Galletly DC. A double-blind comparative study of three formulations of diazepam in volunteers. Anesth Intensive Care. 1988;16:158–63.

    CAS  Google Scholar 

  185. Reves JG, Fragan RJ, Vinik R, et al. Midazolam: pharmacology and uses. Anesthesiology. 1985;62:310–7.

    PubMed  CAS  Google Scholar 

  186. Lloyd-Thomas AR, Booker PD. Infusion of midazolam in paediatric patients after cardiac surgery. Br J Anaesth. 1986;58:1109–15.

    PubMed  CAS  Google Scholar 

  187. Silvasi DL, Rosen DA, Rosen KR. Continuous intravenous midazolam infusion for sedation in the pediatric intensive care unit. Anesth Analg. 1988;67:286–8.

    PubMed  CAS  Google Scholar 

  188. Rosen DA, Rosen KR. Midazolam for sedation in the paediatric intensive care unit. Intensive Care Med. 1991;17:S15–9.

    PubMed  Google Scholar 

  189. Jacqz-Algrain E, Daoud P, Burtin P, Desplanques L, Beaufils F. Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies. Lancet. 1994;344:646–50.

    Google Scholar 

  190. Beebe DS, Belani KG, Chang P, et al. Effectiveness of preoperative sedation with rectal midazolam, ketamine, or their combination in young children. Anesth Analg. 1992;75:880–4.

    PubMed  CAS  Google Scholar 

  191. McMillian CO, Spahr-Schopfer IA, Sikich N, et al. Premedication of children with oral midazolam. Can J Anaesth. 1992;39:545–50.

    Google Scholar 

  192. Karl HW, Rosenberger JL, Larach MG, Ruffle JM. Transmucosal administration of midazolam for premedication of pediatric patients: comparison of the nasal and sublingual routes. Anesthesiology. 1993;78:885–91.

    PubMed  CAS  Google Scholar 

  193. Theroux MC, West DW, Cordry DH, et al. Efficacy of midazolam in facilitating suturing of lacerations in preschool children in the emergency department. Pediatrics. 1993;91:624–7.

    PubMed  CAS  Google Scholar 

  194. Tobias JD. Subcutaneous administration of fentanyl and midazolam to prevent withdrawal following prolonged sedation in children. Crit Care Med. 1999;27:2262–5.

    PubMed  CAS  Google Scholar 

  195. Cote CJ, Cohen IT, Suresh S, et al. A comparison of three doses of a commercially prepared oral midazolam syrup in children. Anesth Analg. 2002;94:37–43.

    PubMed  CAS  Google Scholar 

  196. Bauer TM, Ritz R, Haberthur C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995;346:145–7.

    PubMed  CAS  Google Scholar 

  197. Trouvin JH, Farinotti R, Haberer JP, et al. Pharmacokinetics of midazolam in anesthetized cirrhotic patients. Br J Anaesth. 1988;60:762–7.

    PubMed  CAS  Google Scholar 

  198. Vinik HR, Reves JG, Greenblatt DJ, et al. The pharmacokinetics of midazolam in chronic renal failure patients. Anesthesiology. 1983;59:390–4.

    PubMed  CAS  Google Scholar 

  199. de Wildt SN, de Hoog M, Vinks AA, et al. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care unit patients. Crit Care Med. 2003;31:1952–8.

    PubMed  Google Scholar 

  200. Payne K, Mattheyse FJ, Liebenberg D, et al. The pharmacokinetics of midazolam in paediatric patients. Eur J Clin Pharmacol. 1989;37:267–72.

    PubMed  CAS  Google Scholar 

  201. Shapiro BA, Warren J, Egol AB, et al. Practice parameters for intravenous analgesia and sedation for adult patients in the intensive care unit: an executive summary. Crit Care Med. 1995;23:1596–600.

    PubMed  CAS  Google Scholar 

  202. Pohlman AS, Simpson KP, Hall JCB. Continuous intravenous infusions of lorazepam versus midazolam for sedation during mechanical ventilatory support: a prospective, randomized study. Crit Care Med. 1994;22:1241–7.

    PubMed  CAS  Google Scholar 

  203. Dundee JW, Johnston HM, Gray RC. Lorazepam as a sedative-amnestic in an intensive care unit. Curr Med Res Opin. 1976;4:290–5.

    PubMed  CAS  Google Scholar 

  204. Lugo RA, Chester EA, Cash J, et al. A cost analysis of enterally administered lorazepam in the pediatric intensive care unit. Crit Care Med. 1999;27:417–21.

    PubMed  CAS  Google Scholar 

  205. Tobias JD, Deshpande JK, Gregory DF. Outpatient therapy of iatrogenic drug dependency following prolonged sedation in the Pediatric Intensive Care Unit. Intensive Care Med. 1994;20:504–7.

    PubMed  CAS  Google Scholar 

  206. Arbour R, Esparis B. Osmolar gap acidosis in a 60 year old man treated for hypoxemic respiratory failure. Chest. 2000;118:545–6.

    PubMed  CAS  Google Scholar 

  207. Reynolds HN, Teiken P, Regan M, et al. Hyperlactatemia, increased osmolar gap, renal dysfunction during continuous lorazepam infusion. Crit Care Med. 2000;28:1631–4.

    PubMed  CAS  Google Scholar 

  208. Arroliga AC, Shehab N, McCarthy K, Gonzales JP. Relationship of continuous infusion lorazepam to serum propylene glycol concentration in critically ill adults. Crit Care Med. 2004;32:1709–14.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Tobias MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Martin, D.P., Tobias, J.D. (2014). Pharmacology of Inhalational and Intravenous Anesthetic Agents. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6359-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6359-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6358-9

  • Online ISBN: 978-1-4471-6359-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics