Skip to main content

Mechanical Ventilation

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Mechanical ventilation is perhaps the cornerstone of contemporary critical care. Indeed, the history of critical care medicine, especially pediatric critical care medicine, is inextricably tied with that of mechanical ventilation. The first Pediatric Intensive Care Units (PICUs) arose during the polio epidemic with negative pressure ventilation (the so-called “iron lung”). However, while mechanical ventilation is clearly life-sustaining, one should remember that it is only a supportive modality and does not reverse the underlying disease process. Moreover, mechanical ventilation can be associated with a number of adverse effects, which in turn can be associated with significant morbidity and risk of mortality. A thorough understanding of the physiologic basis of mechanical ventilation is therefore essential to providing safe, effective care in the PICU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Downes JJ. Development of pediatric critical care medicine – how did we get here and why? In: Wheeler DS, Wong HR, Shanley TP, editors. Pediatric critical care medicine: basic science and clinical evidence. London: Springer London Limited; 2007. p. 3–30.

    Google Scholar 

  2. Harris TR, Wood BR. Physiologic principles. In: Goldsmith JP, Karotkin EH, editors. Assisted ventilation of the neonate. 3rd ed. Philadelphia: W.B. Saunders Company; 1996. p32.

    Google Scholar 

  3. DiCarlo SE. Teaching alveolar ventilation with simple, inexpensive models. Adv Physiol Educ. 2008;32(3):185–91.

    PubMed  Google Scholar 

  4. Cheifetz IM. Management of acute lung injury: sharing data between adults and children. Respir Care. 2011;56:1258–72.

    PubMed  Google Scholar 

  5. Dunnill MS. Postnatal growth of the lung. Thorax. 1962;17:329–33.

    PubMed Central  Google Scholar 

  6. Stocks J. Respiratory physiology during early life. Monaldi Arch Chest Dis. 1999;54:358–64.

    CAS  PubMed  Google Scholar 

  7. Bateman ST, Arnold JH. Acute respiratory in children. Curr Opin Pediatr. 2000;12:233–7.

    CAS  PubMed  Google Scholar 

  8. Chase M, Wheeler DS, editors. The pediatric chest. London: Springer London Limited; 2007.

    Google Scholar 

  9. Wheeler DS, Zingarelli B, Wong HR. Children are not small adults. Open Inflamm J. 2011;4:4–15.

    PubMed Central  PubMed  Google Scholar 

  10. Boyden EA, Tompsett DH. The changing patterns in the developing lungs of infants. Acta Anat (Basel). 1965;61:164–92.

    CAS  Google Scholar 

  11. Reid L. Influence of the pattern of structural growth of lung on susceptibility to specific infectious diseases in infants and children. Pediatr Res. 1977;11:210–5.

    CAS  PubMed  Google Scholar 

  12. Thurlbeck WM. Postnatal growth of the lung and its significance in disease. Hum Pathol. 1978;9:492–3.

    CAS  PubMed  Google Scholar 

  13. Zeman KL, Bennett WD. Growth of the small airways and alveoli from childhood to the adult lung measured by aerosol-derived airway morphometry. J Appl Physiol. 2006;100:965–71.

    PubMed  Google Scholar 

  14. Hogg JC, Williams J, Richardson JB, Macklem PT, Thurlbeck WM. Age as a factor in the distribution of lower-airway conductance and in the pathologic anatomy of obstructive lung disease. N Engl J Med. 1970;282:1283–7.

    CAS  PubMed  Google Scholar 

  15. Peroni DG, Boner AL. Atelectasis: mechanisms, diagnosis, and management. Paediatr Respir Rev. 2000;1:274–8.

    CAS  PubMed  Google Scholar 

  16. Muller NL, Bryan AC. Chest wall mechanics and respiratory muscles in infants. Pediatr Clin North Am. 1979;26:503–16.

    CAS  PubMed  Google Scholar 

  17. Thorsteinsson A, Jonmarker C, Larsson A, Vilstrup C, Werner O. Functional residual capacity in anesthetized children: normal values and values in children with cardiac anomalies. Anesthesiology. 1990;73:876–81.

    CAS  PubMed  Google Scholar 

  18. West JB. Ventilation/blood flow and gas exchange. 3rd ed. Oxford: Blackwell; 1977. p. 33–52.

    Google Scholar 

  19. Guslits BG, Gaston SE, Bryan MH, England SJ, Bryan AC. Diaphragmatic work of breathing in premature human infants. J Appl Physiol. 1987;62:1410–5.

    CAS  PubMed  Google Scholar 

  20. Muller N, Volgyesi G, Calle D, Whitton J, Froes AB, Bryan MH, et al. Diaphragmatic muscle fatigue in the newborn. J Appl Physiol. 1979;46:688–95.

    CAS  PubMed  Google Scholar 

  21. Muller N, Volgyesi G, Bryan MH, Bryan AC. The consequences of diaphragmatic muscle fatigue in the newborn infant. J Pediatr. 1979;95:793–7.

    CAS  PubMed  Google Scholar 

  22. West JB. Respiratory physiology: the essentials. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  23. Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149:8–13.

    CAS  PubMed  Google Scholar 

  24. Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R. Regional effects and mechanisms of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA. 1993;269:2122–7.

    CAS  PubMed  Google Scholar 

  25. Gattinoni L, Pelosi P, Crotti S, Valenza F. Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151:1807–14.

    CAS  PubMed  Google Scholar 

  26. Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Intensive Care Med. 2000;26:1215–27.

    CAS  PubMed  Google Scholar 

  27. Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P. Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiologic correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med. 2000;26:1046–56.

    CAS  PubMed  Google Scholar 

  28. Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med. 2000;26:857–69.

    CAS  PubMed  Google Scholar 

  29. Grychtol B, Wolf GK, Arnold JH. Differences in regional pulmonary pressure-impedance curves before and after lung injury assessed with a novel algorithm. Physiol Meas. 2009;30:S137–48.

    PubMed  Google Scholar 

  30. Wolf GK, Grychtol B, Frerichs I, Zurakowski D, Arnold JH. Regional lung volume changes during high-frequency oscillatory ventilation. Pediatr Crit Care Med. 2010;11:610–5.

    PubMed  Google Scholar 

  31. Gomez-Laberge C, Rettig JS, Smallwood CD, Boyd TK, Arnold JH, Wolf GK. Interaction of dependent and non-dependent regions of the acutely injured lung during a stepwise recruitment manoeuvre. Physiol Meas. 2013;34:163–77.

    PubMed  Google Scholar 

  32. Heaf DP, Helms P, Gordon I, Turner HM. Postural effects on gas exchange in infants. N Engl J Med. 1983;308:1505–8.

    CAS  PubMed  Google Scholar 

  33. Davies H, Kitchman R, Gordon I, Helms P. Regional ventilation in infancy. Reversal of adult pattern. N Engl J Med. 1985;313:1626–8.

    CAS  PubMed  Google Scholar 

  34. Bhuyan U, Peters AM, Gordon I, Davies H, Helms P. Effects of posture on the distribution of pulmonary ventilation and perfusion in children and adults. Thorax. 1989;44:480–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Davies H, Helms P, Gordon I. Effect of posture on regional ventilation in children. Pediatr Pulmonol. 1992;12:227–32.

    CAS  PubMed  Google Scholar 

  36. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Google Scholar 

  37. Hanson JH, Flori H. Application of the acute respiratory distress syndrome network low-tidal volume strategy to pediatric acute lung injury. Respir Care Clin N Am. 2006;12:349–57.

    PubMed  Google Scholar 

  38. Randolph AG, Wypij D, Venkataraman ST, Hanson JH, Gedeit RG, Meert KL, et al. Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA. 2002;288:2561–8.

    PubMed  Google Scholar 

  39. Randolph AG, Forbes PW, Gedeit RG, Arnold JH, Wetzel RC, Luckett PM, et al. Cumulative fluid intake minus output is not associated with ventilator weaning during or extubation outcomes in children. Pediatr Crit Care Med. 2005;6:642–7.

    PubMed  Google Scholar 

  40. Curley MA, Hibberd PL, Fineman LD, Wypij D, Shih MC, Thompson JE, et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA. 2005;294:229–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Adkins WK, Herndon LA, Coker PJ, Buchanan B, Parker JC. Age effects susceptibility to pulmonary barotrauma in rabbits. Crit Care Med. 1991;19:390–3.

    CAS  PubMed  Google Scholar 

  42. Copland IB, Martinez F, Kavanagh BP, Engelberts D, McKerlie C, Belik J, et al. High tidal volume ventilation causes different inflammatory responses in newborn versus adult lung. Am J Respir Crit Care Med. 2004;169:739–48.

    PubMed  Google Scholar 

  43. Kornecki A, Tsuchida S, Ondiveeran HK, Engelberts D, Frndova H, Tanswell AK, et al. Lung development and susceptibility to ventilator-induced lung injury. Am J Respir Crit Care Med. 2005;171:743–52.

    PubMed  Google Scholar 

  44. Martinez F, Lewis J, Copland I, Engelberts D, Kavanagh BP, Post M, et al. Mechanical ventilation effect on surfactant content, function, and lung compliance in the newborn rat. Pediatr Res. 2004;56:19–25.

    PubMed  Google Scholar 

  45. Albuali WH, Singh RN, Fraser DD, Seabrook JA, Kavanagh BP, Parshuram CS, et al. Have changes in ventilation practice improved outcome in children with acute lung injury? Pediatr Crit Care Med. 2007;8:324–30.

    PubMed  Google Scholar 

  46. Hu X, Qian S, Xu F, Huang B, Zhou D, Wang Y, et al. Incidence, management, and mortality of acute hypoxemic respiratory failure and acute respiratory distress syndrome from a prospective study of Chinese paediatric intensive care network. Acta Paediatr. 2010;99:715–21.

    CAS  PubMed  Google Scholar 

  47. Zhu YF, Lu XL, Wang Y, Chen JL, Chao JX, Zhou XW, et al. Mortality and morbidity of acute hypoxemic respiratory failure and acute respiratory distress syndrome in infants and young children. Chin Med J (Engl). 2012;125:2265–71.

    Google Scholar 

  48. Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, et al. Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med. 2007;8:317–23.

    PubMed  Google Scholar 

  49. Khemani RG, Conti D, Alonzo TA, Bart 3rd RD, Newth CJ. Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med. 2009;35:1428–37.

    PubMed  Google Scholar 

  50. Farias JA, Frutos F, Esteban A, Flores JC, Retta A, Baltodano A, et al. What is the daily practice of mechanical ventilation in pediatric intensive care units? A multicenter study. Intensive Care Med. 2004;30:918–25.

    CAS  PubMed  Google Scholar 

  51. Khemani RG, Markovitz BP, Curley MA. Characteristics of children intubated and mechanically ventilated in 16 PICUs. Chest. 2009;136:765–71.

    PubMed Central  PubMed  Google Scholar 

  52. Wolfler A, Calderoni E, Ottonello G, Conti G, Baroncini S, Santuz P, et al. Daily practice of mechanical ventilation in Italian pediatric intensive care units: a prospective survey. Pediatr Crit Care Med. 2011;12:141–6.

    PubMed  Google Scholar 

  53. Farias JA, Fernandez A, Monteverde E, Flores JC, Baltodano A, Mechaca A, et al. Mechanical ventilation in pediatric intensive care units during the season for acute lower respiratory infection: a multicenter study. Pediatr Crit Care Med. 2012;13:158–64.

    PubMed  Google Scholar 

  54. Mesiano G, Davis GM. Ventilatory strategies in the neonatal and paediatric intensive care units. Paediatr Respir Rev. 2008;9:281–9.

    PubMed  Google Scholar 

  55. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358:700–8.

    CAS  PubMed  Google Scholar 

  56. Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, Yoder BA, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362:1970–9.

    PubMed  Google Scholar 

  57. Fortenberry JD, Del Toro J, Jefferson LS, Evey L, Haase D. Management of pediatric acute hypoxemic respiratory insufficiency with bilevel positive pressure (BiPAP) nasal mask ventilation. Chest. 1995;108:1059–64.

    CAS  PubMed  Google Scholar 

  58. Teague WG. Noninvasive ventilation in the pediatric intensive care unit for children with acute respiratory failure. Pediatr Pulmonol. 2003;35:418–26.

    PubMed  Google Scholar 

  59. Cheifetz IM. Invasive and noninvasive pediatric mechanical ventilation. Respir Care. 2003;48:442–53.

    PubMed  Google Scholar 

  60. Piastra M, Antonelli M, Chiaretti A, Polidori G, Polidori L, Conti G. Treatment of acute respiratory failure by helmet-delivered non-invasive pressure support ventilation in children with acute leukemia: a pilot study. Intensive Care Med. 2004;30:472–6.

    PubMed  Google Scholar 

  61. Katz S, Selvadurai H, Keilty K, Mitchell M, MacLusky I. Outcome of non-invasive positive pressure ventilation in paediatric neuromuscular disease. Arch Dis Child. 2004;89:121–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Bernet V, Hug MI, Frey B. Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med. 2005;6:660–4.

    PubMed  Google Scholar 

  63. Essouri S, Chevret L, Durand P, Haas V, Fauroux B, Devictor D. Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med. 2006;7:329–34.

    PubMed  Google Scholar 

  64. Piastra M, Antonelli M, Caresta E, Chiaretti A, Polidori G, Conti G. Noninvasive ventilation in childhood acute neuromuscular respiratory failure: a pilot study. Respiration. 2006;73:791–8.

    CAS  PubMed  Google Scholar 

  65. Pancera CF, Hayashi M, Fregnani JH, Negri EM, Deheinzelin D, de Camargo B. Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. J Pediatr Hematol Oncol. 2008;30:533–8.

    PubMed  Google Scholar 

  66. Yanez LJ, Yunge M, Emilfork M, Lapadula M, Alcantara A, Fernandez C, et al. A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2008;9:484–9.

    PubMed  Google Scholar 

  67. Piastra M, De Luca D, Pietrini D, Pulitano S, D’Arrigo S, Mancino A, et al. Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med. 2009;35:1420–7.

    PubMed  Google Scholar 

  68. Dohna-Schwake C, Stehling F, Tschiedel E, Wallot M, Mellies U. Non-invasive ventilation on a pediatric intensive care unit: feasibility, efficacy, and predictors of success. Pediatr Pulmonol. 2011;46:1114–20.

    PubMed  Google Scholar 

  69. Mayordomo-Colunga J, Medina A, Rey C, Concha A, Menendez S, Los Arcos M, et al. Non invasive ventilation after extubation in paediatric patients: a preliminary study. BMC Pediatr. 2010;10:29.

    PubMed Central  PubMed  Google Scholar 

  70. L’Her E, Deye N, Lellouche F, Taille S, Demoule A, Fraticelli A, et al. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med. 2005;172:1112–8.

    PubMed  Google Scholar 

  71. Keenan SP, Powers C, McCormack DG, Block G. Noninvasive positive pressure ventilation for postextubation respiratory distress: a randomized controlled trial. JAMA. 2002;287:3238–44.

    PubMed  Google Scholar 

  72. Esteban A, Frutos-Vivar F, Ferguson ND, Arabi Y, Apeztequia C, Gonzalez M, et al. Noninvasive positive pressure ventilation for respiratory failure after extubation. N Engl J Med. 2004;350:2452–60.

    CAS  PubMed  Google Scholar 

  73. Kavanagh BP, Roy L. Pediatric ventilation – towards simpler approaches for complex diseases. Paediatr Anaesth. 2005;15:627–9.

    PubMed  Google Scholar 

  74. Lee JH, Rehder KJ, Williford L, Cheifetz IM, Turner DA. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med. 2013;39:247–57.

    PubMed  Google Scholar 

  75. Spence KL, Murphy D, Kilian C, McGonigle R, Kilani RA. High-flow nasal cannula as a device to provide continuous positive airway pressure in infants. J Perinatol. 2007;27:772–5.

    CAS  PubMed  Google Scholar 

  76. Kubicka ZJ, Limauro J, Darnall RA. Heated, humidified high-flow nasal cannula therapy: yet another way to deliver continuous positive airway pressure? Pediatrics. 2008;121:82–8.

    PubMed  Google Scholar 

  77. Finer NN, Mannino FL. High-flow nasal cannula: a kinder, gentler CPAP? J Pediatr. 2009;154:160–2.

    PubMed  Google Scholar 

  78. Dysart K, Miller TL, Wolfson MR, Shaffer TH. Research in high flow therapy: mechanism of action. Respir Med. 2009;103:1400–5.

    PubMed  Google Scholar 

  79. Arora B, Mahajan P, Zidan MA, Sethuraman U. Nasopharyngeal airway pressures in bronchiolitis patients treated with high-flow nasal cannula oxygen therapy. Pediatr Emerg Care. 2012;28:1179–84.

    PubMed  Google Scholar 

  80. McKiernan C, Chua LC, Visintainer PF, Allen H. High flow nasal cannula therapy in infants with bronchiolitis. J Pediatr. 2010;156:634–8.

    PubMed  Google Scholar 

  81. Schibler A, Pham TM, Dunster KR, Foster K, Barlow A, Gibbons K, et al. Reduced intubation rates for infants after introduction of high-flow nasal prong oxygen delivery. Intensive Care Med. 2011;37:847–52.

    CAS  PubMed  Google Scholar 

  82. Ganu SS, Gautam A, Wilkins B, Egan J. Increase in use of non-invasive ventilation for infants with severe bronchiolitis is associated with decline in intubation rates over a decade. Intensive Care Med. 2012;38:1177–83.

    PubMed  Google Scholar 

  83. Hartmann H, Jawad MH, Noyes J, Samuels MP, Southall DP. Negative extrathoracic pressure ventilation in central hypoventilation syndrome. Arch Dis Child. 1994;70:418–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Samuels MP, Raine J, Wright T, Alexander JA, Lockyer K, Spencer SA, et al. Continuous negative extrathoracic pressure in neonatal respiratory failure. Pediatrics. 1996;98:1154–60.

    CAS  PubMed  Google Scholar 

  85. Corrado A, Gorini M, Villella G, De Paola E. Negative pressure ventilation in the treatment of acute respiratory failure: an old noninvasive technique reconsidered. Eur Respir J. 1996;9:1531–44.

    CAS  PubMed  Google Scholar 

  86. Shekerdemian LS, Shore DF, Lincoln C, Bush A, Redington AN. Negative-pressure ventilation improves cardiac output after right heart surgery. Circulation. 1996;94:II49–55.

    CAS  PubMed  Google Scholar 

  87. Shekerdemian LS, Schulze-Neick I, Redington AN, Bush A, Penny DJ. Negative pressure ventilation as haemodynamic rescue following surgery for congenital heart disease. Intensive Care Med. 2000;26:93–6.

    CAS  PubMed  Google Scholar 

  88. Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiorespiratory responses to negative pressure ventilation after tetralogy of Fallot repair: a hemodynamic tool for patients with a low-output state. J Am Coll Cardiol. 1999;33:549–55.

    CAS  PubMed  Google Scholar 

  89. Shekerdemian LS, Bush A, Lincoln C, Shore DF, Petros AJ, Redington AN. Cardiopulmonary interactions in healthy children and children after simple cardiac surgery: the effects of positive and negative pressure ventilation. Heart. 1997;78:587–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation. 1997;96:3934–42.

    CAS  PubMed  Google Scholar 

  91. Chatburn RL. Understanding mechanical ventilators. Expert Rev Respir Med. 2010;4:809–19.

    PubMed  Google Scholar 

  92. Mireles-Cabodevila E, Hatipoglu U, Chatburn RL. A rational framework for selecting modes of ventilation. Respir Care. 2013;58:348–66.

    PubMed  Google Scholar 

  93. Chatburn RL. Classification of ventilator modes: update and proposal for implementation. Respir Care. 2007;52:301–23.

    PubMed  Google Scholar 

  94. Campbell RS, Davis BR. Pressure-controlled versus volume-controlled ventilation: does it matter? Respir Care. 2002;47:416–26.

    PubMed  Google Scholar 

  95. Kallet RH, Campbell AR, Alonso JA, Morabito DJ, Mackersie RC. The effects of pressure control versus volume control assisted ventilation on patient work of breathing in acute lung injury and acute respiratory distress syndrome. Respir Care. 2000;45:1085–96.

    CAS  PubMed  Google Scholar 

  96. Davis KJ, Branson RD, Campbell RS, Porembka DT. Comparison of volume control and pressure control ventilation: is flow waveform the difference? J Trauma. 1996;41:808–14.

    PubMed  Google Scholar 

  97. Prella M, Feihl F, Domenighetti G. Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation. Chest. 2002;122:1382–8.

    PubMed  Google Scholar 

  98. Rappaport SH, Shpiner R, Yoshihara G, Wright J, Chang P, Abraham E. Randomized, prospective trial of pressure-limited versus volume-controlled ventilation in severe respiratory failure. Crit Care Med. 1994;22:22–32.

    CAS  PubMed  Google Scholar 

  99. Esteban A, Alia I, Gordo F, de Pablo R, Suarez J, Gonzalez G, et al. Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled ventilation in ARDS. For the Spanish Lung Failure Collaborative Group. Chest. 2000;117:1690–6.

    CAS  PubMed  Google Scholar 

  100. Keidan I, Berkenstadt H, Segal E, Perel A. Pressure versus volume-controlled ventilation with a laryngeal mask airway in paediatric patients. Paediatr Anaesth. 2001;11:691–4.

    CAS  PubMed  Google Scholar 

  101. Bordes M, Semjen F, Degryse C, Bourgain JL, Cros AM. Pressure-controlled ventilation is superior to volume-controlled ventilation with a laryngeal mask airway in children. Acta Anaesthesiol Scand. 2007;51:82–5.

    CAS  PubMed  Google Scholar 

  102. Seet MM, Soliman KM, Sbeih ZF. Comparison of three modes of positive pressure mask ventilation during induction of anaesthesia: a prospective, randomized, crossover study. Eur J Anaesthesiol. 2009;26:913–6.

    PubMed  Google Scholar 

  103. Guldager H, Nielsen SL, Carl P, Soerensen MB. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure. Crit Care. 1997;1:75–7.

    PubMed Central  PubMed  Google Scholar 

  104. Kocis KC, Dekeon MK, Rosen HK, Bandy KP, Crowley DC, Bove EL, et al. Pressure-regulated volume control vs volume control ventilation in infants after surgery for congenital heart disease. Pediatr Cardiol. 2001;22:233–7.

    CAS  PubMed  Google Scholar 

  105. Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are high. Am J Respir Crit Care Med. 2005;172:1241–5.

    PubMed Central  PubMed  Google Scholar 

  106. Villar J, Perez-Mendez L, Basaldua S, Blanco J, Aguilar G, Toral D, et al. A risk tertiles model for predicting mortality in patients with acute respiratory distress syndrome: age, plateau pressure, and P(aO(2))/F(IO(2)) at ARDS onset can predict mortality. Respir Care. 2011;56:420–8.

    PubMed  Google Scholar 

  107. Wetzel RC. Pressure-support ventilation in children with severe asthma. Crit Care Med. 1996;24:1603–5.

    CAS  PubMed  Google Scholar 

  108. Jenkins JK, Gebergzabher YD, Island ER, Habashi N, Hauser GJ. Use of airway pressure release ventilation in a child with refractory hepatopulmonary syndrome after liver transplantation. Pediatr Transplant. 2013;17:E81–7.

    PubMed  Google Scholar 

  109. Kamath SS, Super DM, Mhanna MJ. Effects of airway pressure release ventilation on blood pressure and urine output in children. Pediatr Pulmonol. 2010;45:48–54.

    PubMed  Google Scholar 

  110. Krishnan J, Morrison W. Airway pressure release ventilation: a pediatric case series. Pediatr Pulmonol. 2007;42:83–8.

    PubMed  Google Scholar 

  111. Foland JA, Martin J, Novotny T, Super DM, Dyer RA, Mhanna MJ. Airway pressure release ventilation with a short release time in a child with acute respiratory distress syndrome. Respir Care. 2001;46:1019–23.

    CAS  PubMed  Google Scholar 

  112. Dominquez T, Lin R, Helfaer M. Airway pressure release ventilation in pediatrics. Pediatr Crit Care Med. 2001;2:243–6.

    Google Scholar 

  113. Neumann P, Wrigge H, Zinserling J, Hinz J, Maripuu E, Andersson LG, et al. Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med. 2005;33:1090–5.

    PubMed  Google Scholar 

  114. Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33:S228–40.

    PubMed  Google Scholar 

  115. Frawley PM, Habashi NM. Airway pressure release ventilation: theory and practice. AACN Clin Issues. 2001;12:234–46.

    CAS  PubMed  Google Scholar 

  116. Hedenstierna G, Lichtwarck-Aschoff M. Interfacing spontaneous breathing and mechanical ventilation. Minerva Anestesiol. 2006;72:183–98.

    CAS  PubMed  Google Scholar 

  117. Putensen C, Wrigge H. Clinical review: biphasic positive airway pressure and airway pressure release ventilation. Crit Care. 2004;8:492–7.

    PubMed Central  PubMed  Google Scholar 

  118. Goldstein B, Papadakos PJ. Pressure-controlled inverse-ratio ventilation in children with acute respiratory failure. Am J Crit Care. 1994;3:11–5.

    CAS  PubMed  Google Scholar 

  119. Esan A, Hess DR, Raoof S, George L, Sessler CN. Severe hypoxemic respiratory failure. Part 1 – ventilatory strategies. Chest. 2010;137:1203–16.

    PubMed  Google Scholar 

  120. Guttman J, Haberthur C, Mols G, Lichtwarck-Aschoff M. Automatic tube compensation (ATC). Minerva Anestesiol. 2002;68:369–77.

    Google Scholar 

  121. Haberthur C, Mols G, Elsasser S, Bingisser R, Stocker R, Guttman J. Extubation after breathing trials with automatic tube compensation, T-tube, or pressure support ventilation. Acta Anaesthesiol Scand. 2002;46:973–9.

    CAS  PubMed  Google Scholar 

  122. Figueroa-Casa JB, Montoya R, Arzabala A, Connery SM. Comparison between automatic tube compensation and continuous positive airway pressure during spontaneous breathing trials. Respir Care. 2010;55:549–54.

    Google Scholar 

  123. Fabry B, Haberthur C, Zappe D, Guttman J, Kuhlen R, Stocker R. Breathing pattern and additional work of breathing in spontaneously breathing patients with different ventilatory demands during inspiratory pressure support and automatic tube compensation. Intensive Care Med. 1997;23:545–52.

    CAS  PubMed  Google Scholar 

  124. El-Beleidy AS, Khattab AA, El-Sherbini SA, Al-Gebaly HF. Automatic tube compensation versus pressure support ventilation and extubation outcome in children: a randomized controlled study. ISRN Pediatr. 2013;2013:871376.

    PubMed Central  PubMed  Google Scholar 

  125. Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis. 1992;145:114–20.

    CAS  PubMed  Google Scholar 

  126. Ambrosino N, Rossi A. Proportional assist ventilation (PAV): a significant advantage or a futile struggle between logic and practice? Thorax. 2002;57:272–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Breatnach C, Conlon NP, Stack M, Healy M, O’Hare BP. A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population. Pediatr Crit Care Med. 2010;11:7–11.

    PubMed  Google Scholar 

  128. Bengtsson JA, Edberg KE. Neurally adjusted ventilatory assist in children: an observational study. Pediatr Crit Care Med. 2010;11:253–7.

    PubMed  Google Scholar 

  129. Clement KC, Thurman TL, Holt SJ, Heulitt MJ. Neurally triggered breaths reduce trigger delay and improve ventilator response times in ventilated infants with bronchiolitis. Intensive Care Med. 2011;37:1826–32.

    PubMed  Google Scholar 

  130. Liet JM, Dejode JM, Joram N, Gaillard-Le Roux B, Betremieux P, Roze JC. Respiratory support by neurally adjusted ventilatory assist (NAVA) in severe RSV-related bronchiolitis: a case series report. BMC Pediatr. 2011;11:92.

    PubMed Central  PubMed  Google Scholar 

  131. Alander M, Peltoniemi O, Pokka T, Kontiokari T. Comparison of pressure-, flow-, and NAVA-triggering in pediatric and neonatal ventilatory care. Pediatr Pulmonol. 2012;47:76–83.

    PubMed  Google Scholar 

  132. de la Oliva P, Schuffelmann C, Gomez-Zamora A, Villar J, Kacmarek RM. Asynchrony, neural drive, ventilatory variability, and COMFORT: NAVA versus pressure support in pediatric patients: a non-randomized cross-over trial. Intensive Care Med. 2012;38:838–46.

    PubMed  Google Scholar 

  133. Bordessoule A, Emeriaud G, Morneau S, Jouvet P, Beck J. Neurally adjusted ventilatory assist improves patient-ventilator interaction in infants as compared with conventional ventilation. Pediatr Res. 2012;72:194–202.

    PubMed  Google Scholar 

  134. Duyndam A, Bol BS, Kroon A, Tibboel D, Ista E. Neurally adjusted ventilatory assist: assessing the comfort and feasibility of use in neonates and children. Nurs Crit Care. 2013;18:86–92.

    PubMed  Google Scholar 

  135. Lee J, Kim HS, Sohn JA, Lee JA, Choi CW, Kim EK, et al. Randomized crossover study of neurally adjusted ventilatory assist in preterm infants. J Pediatr. 2012;161:808–13.

    PubMed  Google Scholar 

  136. Stein H, Alosh H, Ethington P, White DB. Prospective crossover comparison between NAVA and pressure control ventilation in premature neonates less than 1500 grams. J Perinatol. 2013;33:452–6.

    CAS  PubMed  Google Scholar 

  137. Verbrugghe W, Jorens PG. Neurally adjusted ventilatory assist: a ventilation tool or a ventilation toy? Respir Care. 2011;56:327–35.

    PubMed  Google Scholar 

  138. Terzi N, Piquilloud L, Roze H, Mercat A, Lofaso F, Delisle S, et al. Clinical review: update on neurally adjusted ventilatory assist – report of a round-table conference. Crit Care. 2012;16:225.

    PubMed Central  PubMed  Google Scholar 

  139. Kavanagh BP. Goals and concerns for oxygenation in acute respiratory distress syndrome. Curr Opin Crit Care. 1998;4:16–20.

    Google Scholar 

  140. Prodhan P, Noviski N. Pediatric acute hypoxemic respiratory failure: management of oxygenation. J Intensive Care Med. 2004;19:140–53.

    PubMed  Google Scholar 

  141. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–45.

    CAS  PubMed  Google Scholar 

  142. Wung JT, James LS, Kilchevsky E, James E. Management of infants with severe respiratory failure and persistence of the fetal circulation, without hyperventilation. Pediatrics. 1985;76:488–94.

    CAS  PubMed  Google Scholar 

  143. Mariani G, Cifuentes J, Carlo WA. Randomized trial of permissive hypercapnia in preterm infants. Pediatrics. 1999;104:1082–8.

    CAS  PubMed  Google Scholar 

  144. Varughese M, Patole S, Shama A, Whitehall J. Permissive hypercapnia in neonates: the case of the good, the bad, and the ugly. Pediatr Pulmonol. 2002;33:56–64.

    CAS  PubMed  Google Scholar 

  145. Ambalavanan N, Carlo WA. Ventilatory strategies in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol. 2006;30:192–9.

    PubMed  Google Scholar 

  146. Hagen EW, Sadek-Badawi M, Carlton DP, Palta M. Permissive hypercapnia and risk of brain injury and developmental impairment. Pediatrics. 2008;122:e583–9.

    PubMed Central  PubMed  Google Scholar 

  147. Guidry CA, Hranjec T, Rodgers BM, Kane B, McGahren ED. Permissive hypercapnia in the management of congenital diaphragmatic hernia: our institutional experience. J Am Coll Surg. 2012;213:640–7.

    Google Scholar 

  148. Ryu J, Haddad G, Carlo WA. Clinical effectiveness and safety of permissive hypercapnia. Clin Perinatol. 2012;39:603–12.

    PubMed  Google Scholar 

  149. Darioli R, Perret C. Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis. 1984;129:385–7.

    CAS  PubMed  Google Scholar 

  150. Downey P, Cox R. Update on the management of status asthmaticus. Curr Opin Pediatr. 1996;8:226–33.

    CAS  PubMed  Google Scholar 

  151. Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med. 1994;22:1568–78.

    CAS  PubMed  Google Scholar 

  152. Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypecapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16:372–7.

    CAS  PubMed  Google Scholar 

  153. Laffey JG, Kavanagh BP. Carbon dioxide and the critically ill – too little of a good thing? (hypothesis paper). Lancet. 1999;354:1283–6.

    CAS  PubMed  Google Scholar 

  154. Laffey JG, Kavanagh BP. Biological effects of hypercapnia. Intensive Care Med. 2000;26:133–8.

    CAS  PubMed  Google Scholar 

  155. Curley G, Laffey JG, Kavanagh BP. Bench-to-bedside review: carbon dioxide. Crit Care. 2010;14:220.

    PubMed Central  PubMed  Google Scholar 

  156. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Crit Care Med. 2010;38:1348–59.

    PubMed  Google Scholar 

  157. Mao C, Wong DT, Slutsky AS, Kavanagh BP. A quantitative assessment of how Canadian intensivists believe they utilize oxygen in the intensive care unit. Crit Care Med. 1999;27:2806–11.

    CAS  PubMed  Google Scholar 

  158. Santschi M, Randolph AG, Rimensberger PC, Jouvet P. Mechanical ventilation strategies in children with acute lung injury: a survey on stated practice pattern. Pediatr Crit Care Med. 2013;14:e332–7.

    PubMed  Google Scholar 

  159. Martin DS, Grocott MP. Oxygen therapy in critical illness: precise control of arterial oxygenation and permissive hypoxemia. Crit Care Med. 2013;41:423–32.

    CAS  PubMed  Google Scholar 

  160. Cheifetz IM, Hamel DS. Is permissive hypoxemia a beneficial strategy for pediatric acute lung injury? Respir Care Clin N Am. 2006;12:359–69.

    PubMed  Google Scholar 

  161. Capellier G, Panwar R. Is it time for permissive hypoxaemia in the intensive care unit? Crit Care Resusc. 2011;13:139–41.

    PubMed  Google Scholar 

  162. Abdelsalam M, Cheifetz IM. Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care. 2010;55:1483–90.

    PubMed  Google Scholar 

  163. Morley CJ. Volume-limited and volume-targeted ventilation. Clin Perinatol. 2012;39:513–23.

    PubMed  Google Scholar 

  164. Sinha SK, Donn SM, Gavey J, McCarty M. Randomised trial of volume controlled versus time cycled, pressure limited ventilation in preterm infants with respiratory distress syndrome. Arch Dis Child Fetal Neonatal Ed. 1997;77:F202–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Cheema IU, Ahluwalia JS. Feasibility of tidal volume-guided ventilation in newborn infants: a randomized, crossover trial using the volume guarantee modality. Pediatrics. 2001;107:1323–8.

    CAS  PubMed  Google Scholar 

  166. Singh J, Sinha SK, Clarke P, Byrne S, Donn SM. Mechanical ventilation of very low birth weight infants: is volume or pressure a better target variable? J Pediatr. 2006;149:308–13.

    PubMed  Google Scholar 

  167. Singh J, Sinha SK, Alsop E, Gupta S, Mishra A, Donn SM. Long term follow-up of very low birthweight infants from a neonatal volume versus pressure mechanical ventilation trial. Arch Dis Child Fetal Neonatal Ed. 2009;94:F360–2.

    CAS  PubMed  Google Scholar 

  168. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.

    CAS  PubMed  Google Scholar 

  169. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–8.

    Google Scholar 

  170. Brower RG, Shanholtz CB, Fessler HE, Shade DM, White Jr P, Wiener CM, et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999;27:1492–8.

    CAS  PubMed  Google Scholar 

  171. Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-Mondejar E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med. 1998;158:1831–8.

    CAS  PubMed  Google Scholar 

  172. Kallet RH, Jasmer RM, Pittet JF, Tang JF, Campbell AR, Dicker R, et al. Clinical implementation of the ARDS network protocol is associated with reduced hospital mortality compared with historical controls. Crit Care Med. 2005;33:925–9.

    PubMed  Google Scholar 

  173. Petrucci N, Iacovelli W. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2007;(3):CD003844.

    Google Scholar 

  174. Kneyber MC, Rimensberger PC. The need for and feasibility of a pediatric ventilation trial: reflections on a survey among pediatric intensivists. Pediatr Crit Care Med. 2012;13:632–8.

    PubMed  Google Scholar 

  175. Lopez-Fernandez Y, Azagra AM, de la Oliva P, Modesto V, Sanchez JI, Parrilla J, et al. Pediatric Acute Lung Injury Epidemiology and Natural History study: incidence and outcome of the acute respiratory distress syndrome in children. Crit Care Med. 2012;40:3238–45.

    PubMed  Google Scholar 

  176. Cannon ML, Cornell J, Tripp-Hamel DS, Gentile MA, Hubble CL, Meliones JN, et al. Tidal volumes for ventilated infants should be determined with a pneumotachometer placed at the end of the endotracheal tube. Am J Respir Crit Care Med. 2000;162:2109–12.

    CAS  PubMed  Google Scholar 

  177. Castle RA, Dunne CJ, Mok Q, Wade AM, Stocks J. Accuracy of displayed tidal volume in the pediatric intensive care unit. Crit Care Med. 2002;30:2566–74.

    PubMed  Google Scholar 

  178. Neve V, Leclerc F, Noizet O, Vernoux S, Leteurtre S, Forget P, et al. Influence of respiratory system impedance on volume and pressure delivered at the Y piece in ventilated infants. Pediatr Crit Care Med. 2003;4:418–25.

    PubMed  Google Scholar 

  179. Hess DR. Approaches to conventional mechanical ventilation of the patient with acute respiratory distress syndrome. Respir Care. 2011;56:1555–72.

    PubMed  Google Scholar 

  180. Cornfeld DN. Acute respiratory distress syndrome in children: physiology and management. Curr Opin Pediatr. 2013;25:338–43.

    Google Scholar 

  181. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressure in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.

    PubMed  Google Scholar 

  182. Curley MA, Arnold JH, Thompson JE, Fackler JC, Grant MJ, Fineman LD, et al. Clinical trial design – effect of prone positioning on clinical outcomes in infants and children with acute respiratory distress syndrome. J Crit Care. 2006;21:23–37.

    PubMed Central  PubMed  Google Scholar 

  183. Rouby JJ, Lu Q, Vieira S. Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur Respir J Suppl. 2003;42:27s–36.

    CAS  PubMed  Google Scholar 

  184. Kallet RH. Pressure-volume curves in the management of acute respiratory distress syndrome. Respir Care Clin N Am. 2003;9:321–41.

    PubMed  Google Scholar 

  185. Terragni PP, Rosboch GL, Lisi A, Vitale AG, Ranieri VM. How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur Respir J Suppl. 2003;42:15s–21.

    CAS  PubMed  Google Scholar 

  186. Albaiceta GM, Blanch L, Lucangelo U. Static pressure-volume curves of the respiratory system: were they just a passing fad? Curr Opin Crit Care. 2008;14:80–6.

    PubMed  Google Scholar 

  187. Thome U, Topper A, Schaller P, Pohlandt F. Effect of mean airway pressure on lung volume during high-frequency oscillatory ventilation of preterm infants. Am J Respir Crit Care Med. 1998;157:1213–8.

    CAS  PubMed  Google Scholar 

  188. Tugrul S, Cakar N, Akinci O, Ozcan PE, Disci R, Esen F, et al. Time required for equilibration of arterial oxygen pressure after setting optimal positive end-expiratory pressure in acute respiratory distress syndrome. Crit Care Med. 2005;33:995–1000.

    PubMed  Google Scholar 

  189. Chiumello D, Coppola S, Froio S, Mietto C, Brazzi L, Carlesso E, et al. Time to reach a new steady state after changes of positive end expiratory pressure. Intensive Care Med. 2013;39:1377–85.

    CAS  PubMed  Google Scholar 

  190. Rimensberger PC, Cox PN, Frndova H, Bryan AC. The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med. 1999;27:1946–52.

    CAS  PubMed  Google Scholar 

  191. Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med. 2001;163:69–78.

    CAS  PubMed  Google Scholar 

  192. Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Hermann P, et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental lung injury. Crit Care Med. 2004;32:1018–27.

    PubMed  Google Scholar 

  193. Grasso S, Stripoli T, DeMichele M, Bruno F, Moschetta M, Angelelli G, et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med. 2007;176:761–7.

    PubMed  Google Scholar 

  194. Huang Y, Yang Y, Chen Q, Liu S, Liu L, Pan C, et al. Pulmonary acute respiratory distress syndrome: positive end-expiratory pressure titration needs stress index. J Surg Res. 2013;185:347–52.

    PubMed  Google Scholar 

  195. Terragni PP, Filippini C, Slutsky AS, Birocco A, Tenaglia T, Grasso S, et al. Accuracy of plateau pressure and stress index to identify injurious ventilation in patients with acute respiratory distress syndrome. Anesthesiology. 2013;119:880–9.

    PubMed  Google Scholar 

  196. Formenti P, Graf J, Santos A, Gard KE, Faltesek K, Adams AB, et al. Non-pulmonary factors strongly influence the stress index. Intensive Care Med. 2011;37:594–600.

    PubMed  Google Scholar 

  197. Coss-Bu JA, Walding DL, David YB, Jefferson LS. Dead space ventilation in critically ill children with lung injury. Chest. 2003;123:2050–6.

    PubMed  Google Scholar 

  198. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346:1281–6.

    PubMed  Google Scholar 

  199. Kallet RH, Alonso JA, Pittet JF, Matthay MA. Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir Care. 2004;49:1008–14.

    PubMed  Google Scholar 

  200. Lucangelo U, Bernabe F, Vatua S, Degrassi G, Villagra A, Fernandez RL, et al. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest. 2008;133:62–71.

    PubMed  Google Scholar 

  201. Raurich JM, Vilar M, Colomar A, Ibanez J, Ayestaran I, Perez-Barcena J, et al. Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care. 2010;55:282–7.

    PubMed  Google Scholar 

  202. Maisch S, Reissmann H, Feuellekrug B, Weismann D, Rutkowski T, Tusman G, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106:175–81.

    PubMed  Google Scholar 

  203. Fengmei G, Chen J, Songqiao L, Congshan Y, Yi Y. Dead space fraction changes during PEEP titration following lung recruitment in patients with ARDS. Respir Care. 2012;57:1578–85.

    PubMed  Google Scholar 

  204. Cortes GA, Marini JJ. Two steps forward in bedside monitoring of lung mechanics: transpulmonary pressure and lung volume. Crit Care. 2013;17:219.

    PubMed Central  PubMed  Google Scholar 

  205. Talmor D, Sarge T, O’Donnell CR, Ritz R, Malhotra A, Lisbon A, et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med. 2006;34:1389–94.

    PubMed Central  PubMed  Google Scholar 

  206. Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095–104.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Loring SH, O’Donnell CR, Behazin N, Malhotra A, Sarge T, Ritz R, et al. Esophageal pressure in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol. 2010;108:515–22.

    PubMed Central  PubMed  Google Scholar 

  208. Gulati G, Novero A, Loring SH, Talmor D. Pleural pressure and optimal positive end-expiratory pressure based on esophageal pressure versus chest wall elastance: incompatible results. Crit Care Med. 2013;41:1951–7.

    PubMed  Google Scholar 

  209. Hayes DJ, Tobias JD, Kukreja J, Preston TJ, Yates AR, Kirkby S, et al. Extracorporeal life support for acute respiratory distress syndrome. Ann Thorac Med. 2013;8:133–41.

    PubMed Central  PubMed  Google Scholar 

  210. Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001;163:1059–63.

    CAS  PubMed  Google Scholar 

  211. Kondili E, Akoumianaki E, Alexopoulou C, Georgopoulos D. Identifying and relieving asynchrony during mechanical ventilation. Expert Rev Respir Med. 2009;3:231–43.

    PubMed  Google Scholar 

  212. Pierson DJ. Patient-ventilator interaction. Respir Care. 2011;56:214–28.

    PubMed  Google Scholar 

  213. MacIntyre NR. Patient-ventilator interactions: optimizing conventional ventilation modes. Respir Care. 2011;56:73–84.

    PubMed  Google Scholar 

  214. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.

    PubMed  Google Scholar 

  215. de Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37:2740–5.

    PubMed  Google Scholar 

  216. Epstein SK. How often does patient-ventilator asynchrony occur and what are the consequences? Respir Care. 2011;56:25–38.

    PubMed  Google Scholar 

  217. Ranallo CD, Heulitt MJ. Sleep and mechanical ventilation in the intensive care unit. J Pediatr Intensive Care. 2013;2:5–10.

    Google Scholar 

  218. Imanaka H, Nishimura M, Takeuchi M, Kimball WR, Yahagi N, Kumon K. Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation. Crit Care Med. 2000;28:402–7.

    CAS  PubMed  Google Scholar 

  219. MacIntyre NR, McConnell R, Cheng KG, Sane A. Patient-ventilator dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med. 1997;25:1671–7.

    CAS  PubMed  Google Scholar 

  220. Kallet RH, Campbell AR, Dicker RA, Katz JA, Mackersie RC. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care. 2005;50:1623–31.

    PubMed  Google Scholar 

  221. Kallet RH, Luce JM. Detection of patient-ventilatory asynchrony during low tidal volume ventilation, using ventilator waveform graphics. Respir Care. 2002;47:183–5.

    PubMed  Google Scholar 

  222. Nilsestuen JO, Hargett KD. Using ventilator graphics to identify patient-ventilator asynchrony. Respir Care. 2005;50:202–34.

    PubMed  Google Scholar 

  223. Gentile MA. Cycling of the mechanical ventilator breath. Respir Care. 2011;56:52–60.

    PubMed  Google Scholar 

  224. Dhand R. Ventilator graphics and respiratory mechanics in the patient with obstructive lung disease. Respir Care. 2005;50:246–61.

    PubMed  Google Scholar 

  225. Valente Barbas CS. Lung recruitment maneuvers in acute respiratory distress syndrome and facilitating resolution. Crit Care Med. 2003;31:S265–71.

    PubMed  Google Scholar 

  226. Kacmarek RM, Kallet RH. Respiratory controversies in the critical care setting: should recruitment maneuvers be used in the management of ALI and ARDS? Respir Care. 2007;52:622–35.

    PubMed  Google Scholar 

  227. Rocco PR, Pelosi P, de Abreu MG. Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome. Expert Rev Respir Med. 2010;4:479–89.

    PubMed  Google Scholar 

  228. Tusman G, Bohm SH, Tempra A, Melkun F, Garcia E, Turchetto E, et al. Effects of recruitment maneuver on atelectasis in anesthetized children. Anesthesiology. 2003;98:14–22.

    PubMed  Google Scholar 

  229. Duff JP, Rosychuk RJ, Joffe AR. The safety and efficacy of sustained inflations as a lung recruitment maneuver in pediatric intensive care unit patients. Intensive Care Med. 2007;33:1778–86.

    PubMed  Google Scholar 

  230. Boriosi JP, Sapru A, Hanson JH, Asselin J, Gildengorin G, Newman V, et al. Efficacy and safety of lung recruitment in pediatric patients with acute lung injury. Pediatr Crit Care Med. 2011;12:431–6.

    PubMed  Google Scholar 

  231. Wolf GK, Gomez-Laberge C, Kheir JN, Zurakowski D, Walsh BK, Adler A, et al. Reversal of dependent lung collapse predicts response to lung recruitment in children with early acute lung injury. Pediatr Crit Care Med. 2012;13:509–15.

    PubMed  Google Scholar 

  232. Kheir JN, Walsh BK, Smallwood CD, Rettig JS, Thompson JE, Gomez-Laberge C, et al. Comparison of 2 lung recruitment strategies in children with acute lung injury. Respir Care. 2013;58:1280–90.

    PubMed  Google Scholar 

  233. Halbertsma FJ, Vaneker M, Pickkers P, Neeleman C, Scheffer GJ, Hoeven van der JG. A single recruitment maneuver in ventilated critically ill children can translocate pulmonary cytokines into the circulation. J Crit Care. 2010;25:10–5.

    CAS  PubMed  Google Scholar 

  234. Samransamruajkit R, Jiraratanawong K, Siritaniwat S, Chottanapan S, Deelodejanawong J, Sritippayawan S, et al. Potent inflammatory cytokine response following lung recruitment maneuvers with HFOV in pediatric acute respiratory distress syndrome. Asian Pac J Allergy Immunol. 2012;30:197–203.

    CAS  PubMed  Google Scholar 

  235. Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178:1156–63.

    PubMed  Google Scholar 

  236. Alsaghir AH, Martin CM. Effect of prone positioning in patients with acute respiratory distress syndrome: a meta-analysis. Crit Care Med. 2008;36:603–9.

    PubMed  Google Scholar 

  237. Abroug F, Ouanes-Besbes L, Elatrous S, Brochard L. The effect of prone positioning in acute respiratory distress syndrome or acute lung injury: a meta-analysis. Areas of uncertainty and recommendations for research. Intensive Care Med. 2008;34:1002–11.

    PubMed  Google Scholar 

  238. Sud S, Sud M, Friedrich JO, Adhikari NK. Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ. 2008;178:1153–61.

    PubMed Central  PubMed  Google Scholar 

  239. Kopterides P, Siempos II, Armaganidis A. Prone positioning in hypoxemic respiratory failure: meta-analysis of randomized controlled trials. J Crit Care. 2009;24:89–100.

    PubMed  Google Scholar 

  240. Gattinoni L, Carlesso E, Taccone P, Polli F, Guerin C, Mancebo J. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual meta-analysis. Minerva Anestesiol. 2010;76:448–54.

    CAS  PubMed  Google Scholar 

  241. Sud S, Friedrich JO, Taccone P, Adhikari NK, Latini R, Pesenti A, et al. Prone ventilation reduced mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36:585–99.

    PubMed  Google Scholar 

  242. Abroug F, Ouanes-Besbes L, Dachraoui F, Brochard L. An updated study-level meta-analysis of randomised controlled trials on proning in ARDS and acute lung injury. Crit Care. 2011;15:R6.

    PubMed Central  PubMed  Google Scholar 

  243. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.

    CAS  PubMed  Google Scholar 

  244. Afshari A, Brok J, Moller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesth Analg. 2011;112:1411–21.

    PubMed  Google Scholar 

  245. Willson DF, Thomas NJ, Markovitz BP, Bauman LA, DiCarlo JV, Pon S, et al. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA. 2005;293:470–6.

    CAS  PubMed  Google Scholar 

  246. Willson DF, Thomas NJ, Tamburro R, Truemper E, Truwit J, Conaway M, et al. Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med. 2013;14:657–65.

    PubMed  Google Scholar 

  247. Pfenninger J, Gerber A, Tschappeler H, Zimmerman A. Adult respiratory distress syndrome in children. J Pediatr. 1982;101:352–7.

    CAS  PubMed  Google Scholar 

  248. Principi T, Fraser DD, Morrison GC, Farsi SA, Carrelas JF, Maurice EA, et al. Complications of mechanical ventilation in the pediatric population. Pediatr Pulmonol. 2010 [epub ahead of print].

    Google Scholar 

  249. Mutlu GM, Factor P. Complications of mechanical ventilation. Respir Care Clin N Am. 2000;6:213–52.

    CAS  PubMed  Google Scholar 

  250. Woodside KJ, van Sonnenberg E, Chon KS, Loran DB, Tocino IM, Zwischenberger JB. Pneumothorax in patients with acute respiratory distress syndrome: pathophysiology, detection, and treatment. J Intensive Care Med. 2003;18:9–20.

    PubMed  Google Scholar 

  251. Tang CW, Liu PY, Huang YF, Pan JY, Lee SS, Hsieh KS, et al. Ventilator-associated pneumonia after pediatric cardiac surgery in southern Taiwan. J Microbiol Immunol Infect. 2009;42:413–9.

    PubMed  Google Scholar 

  252. Taira BR, Fenton KE, Lee TK, Meng H, McCormack JE, Huang E, et al. Ventilator-associated pneumonia in pediatric trauma patients. Pediatr Crit Care Med. 2009;10:491–4.

    PubMed  Google Scholar 

  253. Sharma H, Singh D, Pooni P, Mohan U. A study of profile of ventilator-associated pneumonia in children in Punjab. J Trop Pediatr. 2009;55:393–5.

    PubMed  Google Scholar 

  254. Roeleveld PP, Gujit D, Kuijper EJ, Hazekamp MG, de Wilde RB, de Jonge E. Ventilator-associated pneumonia in children after cardiac surgery in The Netherlands. Intensive Care Med. 2011;37:1656–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Morrow BM, Argent AC. Ventilator-associated pneumonia in a paediatric intensive care unit in a developing country with high HIV prevalence. J Paediatr Child Health. 2009;45:104–11.

    PubMed  Google Scholar 

  256. Morinec J, Iacaboni J, McNett M. Risk factors and interventions for ventilator-associated pneumonia in pediatric patients. J Pediatr Nurs. 2012;27:435–42.

    PubMed  Google Scholar 

  257. Gautam A, Ganu SS, Tegg OJ, Andresen DN, Wilkins BH, Schell DN. Ventilator-associated pneumonia in a tertiary paediatric intensive care unit: a 1-year prospective observational study. Crit Care Resusc. 2012;14:283–9.

    PubMed  Google Scholar 

  258. Brilli RJ, Sparling LW, Lake MR, Butcher J, Myers SS, Clark MD, et al. The business case for preventing ventilator-associated pneumonia in pediatric intensive care unit patients. Jt Comm J Qual Patient Saf. 2008;34:629–38.

    PubMed  Google Scholar 

  259. Bigham MT, Amato R, Bondurrant P, Fridrikkson J, Krawczeski CD, Raake J, et al. Ventilator-associated pneumonia in the pediatric intensive care unit: characterizing the problem and implementing a sustainable solution. J Pediatr. 2009;154:582–7.

    PubMed  Google Scholar 

  260. Awasthi S, Tahazzul M, Ambast A, Govil YC, Jain A. Longer duration of mechanical ventilation was found to be associated with ventilator-associated pneumonia in children aged 1 month to 12 years in India. J Clin Epidemiol. 2013;66:62–6.

    PubMed  Google Scholar 

  261. Rosenthal VD, Alvarez-Moreno C, Villamil-Gomez W, Singh S, Ramachandran B, Navoa-Ng JA, et al. Effectiveness of a multidimensional approach to reduce ventilator-associated pneumonia in pediatric intensive care units of 5 developing countries: International Nosocomial Infection Control Consortium findings. Am J Infect Control. 2012;40:497–501.

    PubMed  Google Scholar 

  262. Brierley J, Highe L, Hines S, Dixon G. Reducing VAP by instituting a care bundle using improvement methodology in a UK paediatric intensive care unit. Eur J Pediatr. 2012;171:323–30.

    PubMed  Google Scholar 

  263. Tamma PD, Turnbull AE, Milstone AM, Lehmann CU, Sydnor ER, Cosgrove SE. Ventilator-associated tracheitis in children: does antibiotic duration matter? Clin Infect Dis. 2011;52:1324–31.

    PubMed Central  PubMed  Google Scholar 

  264. Mhanna MJ, Elsheikh IS, Super DM. Risk factors and outcome of ventilator-associated tracheitis (VAT) in pediatric trauma patients. Pediatr Pulmonol. 2013;48:176–81.

    PubMed Central  PubMed  Google Scholar 

  265. Simpson VS, Bailey A, Higgerson RA, Christie LM. Ventilator-associated tracheobronchitis in a mixed medical/surgical pediatric ICU. Chest. 2013;144:32–8.

    PubMed  Google Scholar 

  266. Muszynski JA, Sartori J, Steele L, Frost R, Wang W, Khan N, et al. Multidisciplinary quality improvement initiative to reduce ventilator-associated tracheobronchitis in the PICU. Pediatr Crit Care Med. 2013;14:533–8.

    PubMed  Google Scholar 

  267. Uckay I, Ahmed QA, Sax H, Pittet D. Ventilator-associated pneumonia as a quality indicator for patient safety? Clin Infect Dis. 2008;46:557–63.

    PubMed  Google Scholar 

  268. Thomas BW, Maxwell RA, Dart BW, Hartmann EH, Bates DL, Mejia VA, et al. Errors in administrative-reported ventilator-associated pneumonia rates: are never events really so? Am Surg. 2011;77:998–1002.

    PubMed  Google Scholar 

  269. Novosel TJ, Hodge LA, Weireter LJ, Britt RC, Collins JN, Reed SF, et al. Ventilator-associated pneumonia: depends on your definition. Am Surg. 2012;78:851–4.

    PubMed  Google Scholar 

  270. Moore BM, Blumberg K, Laguna TA, Liu M, Zielinski EE, Kurachek SC. Incidental sinusitis in a pediatric intensive care unit. Pediatr Crit Care Med. 2012;13:e64–8.

    PubMed  Google Scholar 

  271. Brook I. Microbiology of nosocomial sinusitis in mechanically ventilated children. Arch Otolaryngol Head Neck Surg. 1998;124:35–8.

    CAS  PubMed  Google Scholar 

  272. Bos AP, Tibboel D, Hazebroek FW, Hoeve H, Meradji M, Molenaar JC. Sinusitis: hidden source of sepsis in postoperative pediatric intensive care patients. Crit Care Med. 1989;17:886–8.

    CAS  PubMed  Google Scholar 

  273. Kavanagh BP. Perioperative atelectasis. Minerva Anestesiol. 2008;74:285–7.

    CAS  PubMed  Google Scholar 

  274. Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–54.

    PubMed  Google Scholar 

  275. Dreyfuss D, Savmon G. Ventilator induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157:294–323.

    CAS  PubMed  Google Scholar 

  276. O’Brien JMJ, Welsh CH, Fish RH, Ancukiewicz M, Kramer AM. Excess body weight is not independently associated with outcome in mechanically ventilated patients with acute lung injury. Ann Intern Med. 2004;140:338–45.

    PubMed  Google Scholar 

  277. Suwanvanichkij V, Curtis JR. The use of high positive end-expiratory pressure for respiratory failure in abdominal compartment syndrome. Respir Care. 2004;49:286–90.

    PubMed  Google Scholar 

  278. Slutsky AS, Trembly L. Multiple organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157:1721–5.

    CAS  PubMed  Google Scholar 

  279. Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis. 1982;126:166–70.

    CAS  PubMed  Google Scholar 

  280. Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med. 1995;21:522–36.

    CAS  PubMed  Google Scholar 

  281. Brochard L. Intrinsic (or auto-) positive end-expiratory pressure during spontaneous ventilation. Intensive Care Med. 2002;28:1552–4.

    PubMed  Google Scholar 

  282. Brochard L. Intrinsic (or auto-) PEEP during controlled mechanical ventilation. Intensive Care Med. 2002;28:1376–8.

    PubMed  Google Scholar 

  283. Gay PC, Rodarte JC, Hubmayer RD. The effects of expiratory pressure on isovolume flow and dynamic hyperinflation in patients receiving mechanical ventilation. Am Rev Respir Dis. 1989;139:621–6.

    CAS  PubMed  Google Scholar 

  284. Tobin MJ, Lodato RF. PEEP, auto-PEEP, and waterfalls. Chest. 1989;96:449–51.

    CAS  PubMed  Google Scholar 

  285. McGuire G, Crossley D, Richards J, Wong D. Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med. 1997;25:1059–62.

    CAS  PubMed  Google Scholar 

  286. Zhang XY, Yang ZJ, Wang QX, Fan HR. Impact of positive end-expiratory pressure on cerebral injury patients with hypoxemia. Am J Emerg Med. 2011;29:699–703.

    PubMed  Google Scholar 

  287. Lou M, Xue F, Chen L, Xue U, Wang K. Is high PEEP ventilation strategy safe for acute respiratory distress syndrome after severe traumatic brain injury? Brain Inj. 2012;26:887–90.

    PubMed  Google Scholar 

  288. Bennet M. Sleep and rest in the PICU. Paediatr Nurs. 2003;15:III–VI.

    Google Scholar 

  289. Pinsky MR. The hemodynamic consequences of mechanical ventilation: an evolving story. Intensive Care Med. 1997;23:493–503.

    CAS  PubMed  Google Scholar 

  290. Shekerdemian L, Bohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80:475–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  291. Sin DD, Logan AG, Fitzgerald FS, Liu PP, Bradley TD. Effects of continuous positive airway pressure on cardiovascular outcomes in heart failure patients with and without Cheynes-Stokes respiration. Circulation. 2000;102:61–6.

    CAS  PubMed  Google Scholar 

  292. Duggan M, McNamara PJ, Engelberts D, Pace-Asciak C, Babyn P, Post M, et al. Oxygen attenuates atelectasis-induced injury in the in vivo rat lung. Anesthesiology. 2005;103:522–31.

    PubMed  Google Scholar 

  293. Annat G, Viale JP, Bui Xuan B, Hadj Aissa O, Benzoni D, Vincent M, et al. Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology. 1983;58:136–41.

    CAS  PubMed  Google Scholar 

  294. Kaczmarczyk G. Pulmonary-renal axis during positive-pressure ventilation. New Horiz. 1994;2:512–7.

    CAS  PubMed  Google Scholar 

  295. Dehne MG, Meister M, Rohrig R, Katzer C, Mann V. Effects of inverse ratio ventilation with PEEP on kidney function. Ren Fail. 2010;32:411–6.

    CAS  PubMed  Google Scholar 

  296. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282:54–61.

    CAS  PubMed  Google Scholar 

  297. Mutlu GM, Mutlu EA, Factor P. GI complications in patients receiving mechanical ventilation. Chest. 2001;119:1222–41.

    CAS  PubMed  Google Scholar 

  298. Kiefer P, Nunes S, Kosonen P, Takala J. Effect of positive end-expiratory pressure on splanchnic perfusion in acute lung injury. Intensive Care Med. 2000;26:376–83.

    CAS  PubMed  Google Scholar 

  299. Foronda FK, Troster EJ, Farias JA, Barbas CS, Ferraro AA, Faria LS, et al. The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med. 2011;39:2526–33.

    PubMed  Google Scholar 

  300. Ferguson LP, Walsh BK, Munthall D, Arnold JH. A spontaneous breathing trial with pressure support overestimates readiness for extubation in children. Pediatr Crit Care Med. 2011;12:e330–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alik Kornecki MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kornecki, A., Wheeler, D.S. (2014). Mechanical Ventilation. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6356-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6356-5_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6355-8

  • Online ISBN: 978-1-4471-6356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics