Skip to main content

Single Ventricle Lesions

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

The univentricular or single ventricle heart applies to a heterogeneous group of congenital cardiac lesions with wide variability in the pre- and post-operative anatomy and physiology. The management of a child with single ventricle physiology represents a unique challenge to the intensive care physician both in the pre- and post-operative period, as these children often respond differently to common interventions such as supplemental oxygen, mechanical ventilation, and vasoactive infusions differently than children with biventricular physiology. Surgical strategies for patients with a univentricular heart typically include multiple stages of palliation with the goal of separating the systemic and pulmonary circulations and thereby restoring near normal cardiac physiology. Given the complexity of these lesions and their repair, children may be more adversely affected by inter-current illness, experience limitations in activities of daily living, and succumb to complications seen commonly in the inter-stage periods. The unique physiology encountered in single ventricle heart disease represents the sine qua non of pediatric cardiac intensive care, and it is therefore imperative that pediatric intensivists have a thorough understanding of its nuances. This chapter will address the important physiologic issues that arise in the care of infants and children with a univentricular heart both before and after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman GM, Ghanayem NS, Kampine JM, et al. Venous saturation and the anaerobic threshold in neonates after the Norwood procedure for hypoplastic left heart syndrome. Ann Thorac Surg. 2000;70:1515–20. discussion 21.

    CAS  PubMed  Google Scholar 

  2. Riordan CJ, Locher Jr JP, Santamore WP, Villafane J, Austin 3rd EH. Monitoring systemic venous oxygen saturations in the hypoplastic left heart syndrome. Ann Thorac Surg. 1997;63:835–7.

    CAS  PubMed  Google Scholar 

  3. Taeed R, Schwartz SM, Pearl JM, et al. Unrecognized pulmonary venous desaturation early after Norwood palliation confounds Gp:Gs assessment and compromises oxygen delivery. Circulation. 2001;103:2699–704.

    CAS  PubMed  Google Scholar 

  4. Tweddell JS, Hoffman GM, Fedderly RT, et al. Phenoxybenzamine improves systemic oxygen delivery after the Norwood procedure. Ann Thorac Surg. 1999;67:161–7; discussion 7–8.

    CAS  PubMed  Google Scholar 

  5. Barnea O, Austin EH, Richman B, Santamore WP. Balancing the circulation: theoretic optimization of pulmonary/systemic flow ratio in hypoplastic left heart syndrome. J Am Coll Cardiol. 1994;24:1376–81.

    CAS  PubMed  Google Scholar 

  6. Francis DP, Willson K, Thorne SA, Davies LC, Coats AJ. Oxygenation in patients with a functionally univentricular circulation and complete mixing of blood: are saturation and flow interchangeable? Circulation. 1999;100:2198–203.

    CAS  PubMed  Google Scholar 

  7. McElhinney DB, Marshall AC, Wilkins-Haug LE, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120:1482–90.

    PubMed  Google Scholar 

  8. Atz AM, Travison TG, Williams IA, et al. Prenatal diagnosis and risk factors for preoperative death in neonates with single right ventricle and systemic outflow obstruction: screening data from the Pediatric Heart Network Single Ventricle Reconstruction Trial. J Thorac Cardiovasc Surg. 2010;140:1245–50.

    PubMed Central  PubMed  Google Scholar 

  9. Chaturvedi RR, Ryan G, Seed M, van Arsdell G, Jaeggi ET. Fetal stenting of the atrial septum: technique and initial results in cardiac lesions with left atrial hypertension. Int J Cardiol. 2013;pii: S0167–5273(13)00233–7.

    Google Scholar 

  10. Lim DS, Kulik TJ, Kim DW, et al. Aminophylline for the prevention of apnea during prostaglandin E1 infusion. Pediatrics. 2003;112:e27–9.

    CAS  PubMed  Google Scholar 

  11. Yarlagadda VV, Almodovar MC. Perioperative care of the infant with single ventricle physiology. Curr Treat Options Cardiovasc Med. 2011;13:444–55.

    PubMed  Google Scholar 

  12. Chakravarti S, Mittnacht A, Katz J, et al. Multisite near-infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery. J Cardiothorac Vasc Anesth. 2009;23:663–7.

    CAS  PubMed  Google Scholar 

  13. Hoffman G, Stuth E, Jaquiss R, et al. Changes in cerebral and somatic oxygenation during stage 1 palliation of hypoplastic left heart syndrome using continuous regional cerebral perfusion. J Thorac Cardiovasc Surg. 2004;127:223–33.

    PubMed  Google Scholar 

  14. Tweddell J, Ghanayem N, Hoffman G. Pro: NIRS is “standard of care” for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13:44–50.

    PubMed  Google Scholar 

  15. Green A, Pye S, Yetman AT. The physiologic basis for and nursing considerations in the use of subatmospheric concentrations of oxygen in HLHS. Adv Neonatal Care. 2002;2:177–86.

    PubMed  Google Scholar 

  16. Fike CD, Kaplowitz MR. Effect of chronic hypoxia on pulmonary vascular pressures in isolated lungs of newborn pigs. J Appl Physiol. 1994;77:2853–62.

    CAS  PubMed  Google Scholar 

  17. Haworth SG, Hislop AA. Effect of hypoxia on adaptation of the pulmonary circulation to extra-uterine life in the pig. Cardiovasc Res. 1982;16:293–303.

    CAS  PubMed  Google Scholar 

  18. Day RW, Barton AJ, Pysher TJ, Shaddy RE. Pulmonary vascular resistance of children treated with nitrogen during early infancy. Ann Thorac Surg. 1998;65:1400–4.

    CAS  PubMed  Google Scholar 

  19. Tabbutt S, Ramamoorthy C, Montenegro LM, et al. Impact of inspired gas mixtures on preoperative infants with hypoplastic left heart syndrome during controlled ventilation. Circulation. 2001;104:I159–64.

    CAS  PubMed  Google Scholar 

  20. Ramamoorthy C, Tabbutt S, Kurth CD, et al. Effects of inspired hypoxic and hypercapnic gas mixtures on cerebral oxygen saturation in neonates with univentricular heart defects. Anesthesiology. 2002;96:283–8.

    PubMed  Google Scholar 

  21. Riordan CJ, Randsbeck F, Storey JH, et al. Effects of oxygen, positive end-expiratory pressure, and carbon dioxide on oxygen delivery in an animal model of the univentricular heart. J Thorac Cardiovasc Surg. 1996;112:644–54.

    CAS  PubMed  Google Scholar 

  22. Jacobs ML, Anderson RH. Nomenclature of the functionally univentricular heart. Cardiol Young. 2006;16 Suppl 1:3–8.

    PubMed  Google Scholar 

  23. Hoque T, Richmond M, Vincent JA, Bacha E, Torres A. Current outcomes of hypoplastic left heart syndrome with restrictive atrial septum: a single-center experience. Pediatr Cardiol. 2013;34:1181–9.

    PubMed  Google Scholar 

  24. Tchervenkov CI, Jacobs ML, Tahta SA. Congenital Heart Surgery Nomenclature and Database Project: hypoplastic left heart syndrome. Ann Thorac Surg. 2000;69:S170–9.

    CAS  PubMed  Google Scholar 

  25. Hickey EJ, Caldarone CA, McCrindle BW. Left ventricular hypoplasia: a spectrum of disease involving the left ventricular outflow tract, aortic valve, and aorta. J Am Coll Cardiol. 2012;59:S43–54.

    PubMed  Google Scholar 

  26. Cohen MS, Rychik J. The small left ventricle: how small is too small for biventricular repair? Semin Thorac Cardiovasc Surg Pediatr Cardiac Surg Annu. 1999;2:189–202.

    Google Scholar 

  27. Friedberg MK, Su X, Tworetzky W, et al. Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease: a comparison study with cardiac MRI. Circ Cardiovasc Imaging. 2010;3:735–42.

    PubMed  Google Scholar 

  28. Schwartz ML, Gauvreau K, Geva T. Predictors of outcome of biventricular repair in infants with multiple left heart obstructive lesions. Circulation. 2001;104:682–7.

    CAS  PubMed  Google Scholar 

  29. Emani SM, Bacha EA, McElhinney DB, et al. Primary left ventricular rehabilitation is effective in maintaining two-ventricle physiology in the borderline left heart. J Thorac Cardiovasc Surg. 2009;138:1276–82.

    PubMed Central  PubMed  Google Scholar 

  30. Ohye RG, Sleeper LA, Mahony L, et al. Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med. 2010;362:1980–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Newburger JW, Sleeper LA, Bellinger DC, et al. Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies: the single ventricle reconstruction trial. Circulation. 2012;125:2081–91.

    PubMed Central  PubMed  Google Scholar 

  32. Photiadis J, Asfour B, Sinzobahamvya N, et al. Improved hemodynamics and outcome after modified Norwood operation on the beating heart. Ann Thorac Surg. 2006;81:976–81.

    PubMed  Google Scholar 

  33. Imoto Y, Kado H, Shiokawa Y, Minami K, Yasui H. Experience with the Norwood procedure without circulatory arrest. J Thorac Cardiovasc Surg. 2001;122:879–82.

    CAS  PubMed  Google Scholar 

  34. Cua CL, Thiagarajan RR, Gauvreau K, et al. Early postoperative outcomes in a series of infants with hypoplastic left heart syndrome undergoing stage I palliation operation with either modified Blalock-Taussig shunt or right ventricle to pulmonary artery conduit. Pediatr Crit Care Med. 2006;7:238–44.

    PubMed  Google Scholar 

  35. Li J, Zhang G, Benson L, et al. Comparison of the profiles of postoperative systemic hemodynamics and oxygen transport in neonates after the hybrid or the Norwood procedure: a pilot study. Circulation. 2007;116:I179–87.

    PubMed  Google Scholar 

  36. del Castillo SL, Moromisato DY, Dorey F, et al. Mesenteric blood flow velocities in the newborn with single-ventricle physiology: modified Blalock-Taussig shunt versus right ventricle-pulmonary artery conduit. Pediatr Crit Care Med. 2006;7:132–7.

    PubMed  Google Scholar 

  37. Luce WA, Schwartz RM, Beauseau W, et al. Necrotizing enterocolitis in neonates undergoing the hybrid approach to complex congenital heart disease. Pediatr Crit Care Med. 2011;12(1):46–51.

    PubMed  Google Scholar 

  38. McElhinney DB, Hedrick HL, Bush DM, et al. Necrotizing enterocolitis in neonates with congenital heart disease: risk factors and outcomes. Pediatrics. 2000;106:1080–7.

    CAS  PubMed  Google Scholar 

  39. Freedom RM, Sondheimer H, Sische R, Rowe RD. Development of “subaortic stenosis” after pulmonary arterial banding for common ventricle. Am J Cardiol. 1977;39:78–83.

    CAS  PubMed  Google Scholar 

  40. Webber SA, LeBlanc JG, Keeton BR, et al. Pulmonary artery banding is not contraindicated in double inlet left ventricle with transposition and aortic arch obstruction. Eur J Cardiothorac Surg. 1995;9:515–20.

    CAS  PubMed  Google Scholar 

  41. Lan YT, Chang RK, Drant S, et al. Outcome of staged surgical approach to neonates with single left ventricle and moderate size bulboventricular foramen. Am J Cardiol. 2002;89:959–63.

    PubMed  Google Scholar 

  42. Ballweg JA, Dominguez TE, Ravishankar C, et al. A contemporary comparison of the effect of shunt type in hypoplastic left heart syndrome on the hemodynamics and outcome at stage 2 reconstruction. J Thorac Cardiovasc Surg. 2007;134:297–303.

    PubMed  Google Scholar 

  43. Gist KM, Barrett CS, Graham DA, et al. Pulmonary artery interventions after Norwood procedure: does type or position of shunt predict need for intervention? J Thorac Cardiovasc Surg. 2013;145:1485–92.

    PubMed  Google Scholar 

  44. Pruetz JD, Badran S, Dorey F, Starnes VA, Lewis AB. Differential branch pulmonary artery growth after the Norwood procedure with right ventricle-pulmonary artery conduit versus modified Blalock-Taussig shunt in hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2009;137:1342–8.

    PubMed  Google Scholar 

  45. Rumball EM, McGuirk SP, Stumper O, et al. The RV-PA conduit stimulates better growth of the pulmonary arteries in hypoplastic left heart syndrome. Eur J Cardiothorac Surg. 2005;27:801–6.

    PubMed  Google Scholar 

  46. Tabbutt S, Dominguez TE, Ravishankar C, et al. Outcomes after the stage I reconstruction comparing the right ventricular to pulmonary artery conduit with the modified Blalock Taussig shunt. Ann Thorac Surg. 2005;80:1582–90; discussion 90–1.

    PubMed  Google Scholar 

  47. Ghanayem NS, Allen KR, Tabbutt S, et al. Interstage mortality after the Norwood procedure: results of the multicenter single ventricle reconstruction trial. J Thorac Cardiovasc Surg. 2012;144:896–906.

    PubMed Central  PubMed  Google Scholar 

  48. Sano S, Huang SC, Kasahara S, et al. Risk factors for mortality after the Norwood procedure using right ventricle to pulmonary artery shunt. Ann Thorac Surg. 2009;87:178–85; discussion 85–6.

    PubMed  Google Scholar 

  49. Shamszad P, Gospin TA, Hong BJ, McKenzie ED, Petit CJ. Impact of preoperative risk factors on outcomes after Norwood palliation for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2013;pii: S0022–5223(13)00575–8.

    Google Scholar 

  50. Wernovsky G, Wypij D, Jonas RA, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995;92:2226–35.

    CAS  PubMed  Google Scholar 

  51. Nakano T, Kado H, Shiokawa Y, et al. The low resistance strategy for the perioperative management of the Norwood procedure. Ann Thorac Surg. 2004;77:908–12.

    PubMed  Google Scholar 

  52. Bradley SM, Atz AM, Simsic JM. Redefining the impact of oxygen and hyperventilation after the Norwood procedure. J Thorac Cardiovasc Surg. 2004;127:473–80.

    PubMed  Google Scholar 

  53. Bove EL, Migliavacca F, de Leval MR, et al. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2008;136:312–20. e2.

    PubMed  Google Scholar 

  54. Meliones JN, Bove EL, Dekeon MK, et al. High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation. 1991;84:III364–8.

    CAS  PubMed  Google Scholar 

  55. Nguyen T, Miller M, Gonzalez J, et al. Echocardiography of hypoplastic left heart syndrome. Cardiol Young. 2011;21 Suppl 2:28–37.

    PubMed  Google Scholar 

  56. Donnelly JP, Raffel DM, Shulkin BL, et al. Resting coronary flow and coronary flow reserve in human infants after repair or palliation of congenital heart defects as measured by positron emission tomography. J Thorac Cardiovasc Surg. 1998;115:103–10.

    CAS  PubMed  Google Scholar 

  57. Williams RV, Ritter S, Tani LY, Pagoto LT, Minich LL. Quantitative assessment of ventricular function in children with single ventricles using the Doppler myocardial performance index. Am J Cardiol. 2000;86:1106–10.

    CAS  PubMed  Google Scholar 

  58. Burton GL, Kaufman J, Goot BH, da Cruz EM. The use of arginine vasopressin in neonates following the Norwood procedure. Cardiol Young. 2011;21:536–44.

    PubMed  Google Scholar 

  59. Lister G, Hellenbrand WE, Kleinman CS, Talner NS. Physiologic effects of increasing hemoglobin concentration in left-to-right shunting in infants with ventricular septal defects. N Engl J Med. 1982;306:502–6.

    CAS  PubMed  Google Scholar 

  60. Beekman RH, Tuuri DT. Acute hemodynamic effects of increasing hemoglobin concentration in children with a right to left ventricular shunt and relative anemia. J Am Coll Cardiol. 1985;5:357–62.

    CAS  PubMed  Google Scholar 

  61. Blackwood J, Joffe AR, Robertson CM, et al. Association of hemoglobin and transfusion with outcome after operations for hypoplastic left heart. Ann Thorac Surg. 2010;89:1378–84. e1–2.

    PubMed  Google Scholar 

  62. Cholette JM, Rubenstein JS, Alfieris GM, et al. Children with single-ventricle physiology do not benefit from higher hemoglobin levels post cavopulmonary connection: results of a prospective, randomized, controlled trial of a restrictive versus liberal red-cell transfusion strategy. Pediatr Crit Care Med. 2011;12:39–45.

    PubMed  Google Scholar 

  63. Johnson JN, Jaggers J, Li S, et al. Center variation and outcomes associated with delayed sternal closure after stage 1 palliation for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2010;139:1205–10.

    PubMed Central  PubMed  Google Scholar 

  64. Tabbutt S, Ghanayem N, Ravishankar C, et al. Risk factors for hospital morbidity and mortality after the Norwood procedure: a report from the Pediatric Heart Network Single Ventricle Reconstruction trial. J Thorac Cardiovasc Surg. 2012;144:882–95.

    PubMed  Google Scholar 

  65. Hehir DA, Dominguez TE, Ballweg JA, et al. Risk factors for interstage death after stage 1 reconstruction of hypoplastic left heart syndrome and variants. J Thorac Cardiovasc Surg. 2008;136:94–9, 9 e1–3.

    PubMed  Google Scholar 

  66. Trivedi B, Smith PB, Barker PC, et al. Arrhythmias in patients with hypoplastic left heart syndrome. Am Heart J. 2011;161:138–44.

    PubMed Central  PubMed  Google Scholar 

  67. Mori Y, Nakazawa M, Tomimatsu H, Momma K. Long-term effect of angiotensin-converting enzyme inhibitor in volume overloaded heart during growth: a controlled pilot study. J Am Coll Cardiol. 2000;36:270–5.

    CAS  PubMed  Google Scholar 

  68. Calabro R, Pisacane C, Pacileo G, Russo MG. Hemodynamic effects of a single oral dose of enalapril among children with asymptomatic chronic mitral regurgitation. Am Heart J. 1999;138:955–61.

    CAS  PubMed  Google Scholar 

  69. Montigny M, Davignon A, Fouron JC, et al. Captopril in infants for congestive heart failure secondary to a large ventricular left-to-right shunt. Am J Cardiol. 1989;63:631–3.

    CAS  PubMed  Google Scholar 

  70. Hsu DT, Pearson GD. Heart failure in children: part ii: diagnosis, treatment, and future directions. Circ Heart Fail. 2009;2:490–8.

    PubMed  Google Scholar 

  71. Hsu DT, Zak V, Mahony L, et al. Enalapril in infants with single ventricle: results of a multicenter randomized trial. Circulation. 2010;122:333–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Wessel DL, Berger F, Li JS, et al. Clopidogrel in infants with systemic-to-pulmonary-artery shunts. N Engl J Med. 2013;368:2377–84.

    CAS  PubMed  Google Scholar 

  73. Sivarajan VB, Almodovar MC, Rodefeld MD, Laussen PC. Pediatric extracorporeal life support in specialized situations. Pediatr Crit Care Med. 2013;14:S51–61.

    PubMed  Google Scholar 

  74. Allan CK, Thiagarajan RR, del Nido PJ, et al. Indication for initiation of mechanical circulatory support impacts survival of infants with shunted single-ventricle circulation supported with extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 2007;133:660–7.

    PubMed  Google Scholar 

  75. Hoskote A, Bohn D, Gruenwald C, et al. Extracorporeal life support after staged palliation of a functional single ventricle: subsequent morbidity and survival. J Thorac Cardiovasc Surg. 2006;131:1114–21.

    PubMed  Google Scholar 

  76. Jaggers JJ, Forbess JM, Shah AS, et al. Extracorporeal membrane oxygenation for infant postcardiotomy support: significance of shunt management. Ann Thorac Surg. 2000;69:1476–83.

    CAS  PubMed  Google Scholar 

  77. Pizarro C, Davis DA, Kerins PJ, et al. Extracorporeal membrane oxygenation for neonates with single ventricle and parallel circulations. J Heart Lung Transplant. 2001;20:239–40.

    PubMed  Google Scholar 

  78. Polimenakos AC, Wojtyla P, Smith PJ, et al. Post-cardiotomy extracorporeal cardiopulmonary resuscitation in neonates with complex single ventricle: analysis of outcomes. Eur J Cardiothorac Surg. 2011;40:1396–405; discussion 405.

    PubMed  Google Scholar 

  79. Ravishankar C, Dominguez TE, Kreutzer J, et al. Extracorporeal membrane oxygenation after stage I reconstruction for hypoplastic left heart syndrome. Pediatr Crit Care Med. 2006;7:319–23.

    PubMed  Google Scholar 

  80. Barron DJ, Kilby MD, Davies B, et al. Hypoplastic left heart syndrome. Lancet. 2009;374:551–64.

    PubMed  Google Scholar 

  81. Boris JR. Primary care cardiology for patients with hypoplastic left heart syndrome. Cardiol Young. 2011;21 Suppl 2:53–8.

    PubMed  Google Scholar 

  82. Brenner JI, Kuehl K. Hypoplastic left heart syndrome and other left heart disease: evolution of understanding from population-based analysis to molecular biology and back again–a brief overview. Cardiol Young. 2011;21 Suppl 2:23–7.

    PubMed  Google Scholar 

  83. Galantowicz M, Cheatham JP, Phillips A, et al. Hybrid approach for hypoplastic left heart syndrome: intermediate results after the learning curve. Ann Thorac Surg. 2008;85:2063–70; discussion 70–1.

    PubMed  Google Scholar 

  84. Graham EM, Bradley SM, Atz AM. Preoperative management of hypoplastic left heart syndrome. Expert Opin Pharmacother. 2005;6:687–93.

    CAS  PubMed  Google Scholar 

  85. Krushansky E, Burbano N, Morell V, et al. Preoperative management in patients with single-ventricle physiology. Congenit Heart Dis. 2012;7:96–102.

    PubMed  Google Scholar 

  86. Ringewald JM, Stapleton G, Suh EJ. The hybrid approach – current knowns and unknowns: the perspective of cardiology. Cardiol Young. 2011;21 Suppl 2:47–52.

    PubMed  Google Scholar 

  87. Roche SL, Redington AN. The failing right ventricle in congenital heart disease. Can J Cardiol. 2013;29:768–78.

    PubMed  Google Scholar 

  88. Stevens J, Marino B, Jobes D. Hypoplastic left heart syndrome. In: Nichols D, Ungerleider R, Spevak P, Cameron D, Lappe D, Wetzel R, editors. Critical heart disease in infants and children. 2nd ed. Philadelphia: Mosby, Inc; 2006. p. 823–44.

    Google Scholar 

  89. Theilen U, Shekerdemian L. The intensive care of infants with hypoplastic left heart syndrome. Arch Dis Child Fetal Neonatal Ed. 2005;90:F97–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Williams RV, Zak V, Ravishankar C, et al. Factors affecting growth in infants with single ventricle physiology: a report from the Pediatric Heart Network Infant Single Ventricle Trial. J Pediatr. 2011;159:1017–22. e2.

    PubMed Central  PubMed  Google Scholar 

  91. Hehir DA, Ghanayem NS. Single-ventricle infant home monitoring programs: outcomes and impact. Curr Opin Cardiol. 2013;28:97–102.

    PubMed  Google Scholar 

  92. Petit CJ, Fraser CD, Mattamal R, et al. The impact of a dedicated single-ventricle home-monitoring program on interstage somatic growth, interstage attrition, and 1-year survival. J Thorac Cardiovasc Surg. 2011;142:1358–66.

    PubMed  Google Scholar 

  93. Wright GE, Crowley DC, Charpie JR, et al. High systemic vascular resistance and sudden cardiovascular collapse in recovering Norwood patients. Ann Thorac Surg. 2004;77:48–52.

    PubMed  Google Scholar 

  94. Walker SG, Stuth EA. Single-ventricle physiology: perioperative implications. Semin Pediatr Surg. 2004;13:188–202.

    PubMed  Google Scholar 

  95. Cribbs RK, Heiss KF, Clabby ML, Wulkan ML. Gastric fundoplication is effective in promoting weight gain in children with severe congenital heart defects. J Pediatr Surg. 2008;43:283–9.

    PubMed  Google Scholar 

  96. Kelleher DK, Laussen P, Teixeira-Pinto A, Duggan C. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition. 2006;22:237–44.

    CAS  PubMed  Google Scholar 

  97. Srinivasan C, Sachdeva R, Morrow WR, et al. Standardized management improves outcomes after the Norwood procedure. Congenit Heart Dis. 2009;4:329–37.

    PubMed  Google Scholar 

  98. Watkins S, Morrow SE, McNew BS, Donahue BS. Perioperative management of infants undergoing fundoplication and gastrostomy after stage I palliation of hypoplastic left heart syndrome. Pediatr Cardiol. 2012;33:697–704.

    PubMed Central  PubMed  Google Scholar 

  99. Menon SC, McCandless RT, Mack GK, et al. Clinical outcomes and resource use for infants with hypoplastic left heart syndrome during bidirectional Glenn: summary from the Joint Council for Congenital Heart Disease National Pediatric Cardiology Quality Improvement Collaborative registry. Pediatr Cardiol. 2013;34:143–8.

    PubMed  Google Scholar 

  100. Santamore WP, Barnea O, Riordan CJ, Ross MP, Austin EH. Theoretical optimization of pulmonary-to-systemic flow ratio after a bidirectional cavopulmonary anastomosis. Am J Physiol. 1998;274:H694–700.

    CAS  PubMed  Google Scholar 

  101. Rychik J, Jacobs ML, Norwood Jr WI. Acute changes in left ventricular geometry after volume reduction operation. Ann Thorac Surg. 1995;60:1267–73; discussion 74.

    CAS  PubMed  Google Scholar 

  102. Donofrio MT, Jacobs ML, Spray TL, Rychik J. Acute changes in preload, afterload, and systolic function after superior cavopulmonary connection. Ann Thorac Surg. 1998;65:503–8.

    CAS  PubMed  Google Scholar 

  103. Filippini LH, Ovaert C, Nykanen DG, Freedom RM. Reopening of persistent left superior caval vein after bidirectional cavopulmonary connections. Heart. 1998;79:509–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation. 1997;96:3934–42.

    CAS  PubMed  Google Scholar 

  105. Fogel MA, Durning S, Wernovsky G, et al. Brain versus lung: hierarchy of feedback loops in single-ventricle patients with superior cavopulmonary connection. Circulation. 2004;110:II147–52.

    PubMed  Google Scholar 

  106. Bradley SM, Simsic JM, Mulvihill DM. Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg. 2003;126:1033–9.

    PubMed  Google Scholar 

  107. Hoskote A, Li J, Hickey C, et al. The effects of carbon dioxide on oxygenation and systemic, cerebral, and pulmonary vascular hemodynamics after the bidirectional superior cavopulmonary anastomosis. J Am Coll Cardiol. 2004;44:1501–9.

    PubMed  Google Scholar 

  108. Agarwal HS, Churchwell KB, Doyle TP, et al. Inhaled nitric oxide use in bidirectional Glenn anastomosis for elevated Glenn pressures. Ann Thorac Surg. 2006;81:1429–34.

    PubMed  Google Scholar 

  109. Triedman JK, Bridges ND, Mayer Jr JE, Lock JE. Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J Am Coll Cardiol. 1993;22:207–15.

    CAS  PubMed  Google Scholar 

  110. Brown DW, Gauvreau K, Powell AJ, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation. 2007;116:2718–25.

    PubMed  Google Scholar 

  111. LaPar DJ, Mery CM, Peeler BB, Kron IL, Gangemi JJ. Short and long-term outcomes for bidirectional Glenn procedure performed with and without cardiopulmonary bypass. Ann Thorac Surg. 2012;94:164–70; discussion 70–1.

    PubMed  Google Scholar 

  112. Kogon BE, Plattner C, Leong T, et al. The bidirectional Glenn operation: a risk factor analysis for morbidity and mortality. J Thorac Cardiovasc Surg. 2008;136:1237–42.

    PubMed  Google Scholar 

  113. Booth KL, Roth SJ, Thiagarajan RR, et al. Extracorporeal membrane oxygenation support of the Fontan and bidirectional Glenn circulations. Ann Thorac Surg. 2004;77:1341–8.

    PubMed  Google Scholar 

  114. Carlo WF, Carberry KE, Heinle JS, et al. Interstage attrition between bidirectional Glenn and Fontan palliation in children with hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2011;142:511–6.

    PubMed  Google Scholar 

  115. Hakacova N, Lakomy M, Kovacikova L. Arrhythmias after Fontan operation: comparison of lateral tunnel and extracardiac conduit. J Electrocardiol. 2008;41:173–7.

    PubMed  Google Scholar 

  116. Fiore AC, Turrentine M, Rodefeld M, et al. Fontan operation: a comparison of lateral tunnel with extracardiac conduit. Ann Thorac Surg. 2007;83:622–9; discussion 9–30.

    PubMed  Google Scholar 

  117. Hosein RB, Clarke AJ, McGuirk SP, et al. Factors influencing early and late outcome following the Fontan procedure in the current era. The ‘Two Commandments’? Eur J Cardiothorac Surg. 2007;31:344–52. discussion 53.

    PubMed  Google Scholar 

  118. Salazar JD, Zafar F, Siddiqui K, et al. Fenestration during Fontan palliation: now the exception instead of the rule. J Thorac Cardiovasc Surg. 2010;140:129–36.

    PubMed  Google Scholar 

  119. Bridges ND, Lock JE, Castaneda AR. Baffle fenestration with subsequent transcatheter closure. Modification of the Fontan operation for patients at increased risk. Circulation. 1990;82:1681–9.

    CAS  PubMed  Google Scholar 

  120. Kaulitz R, Ziemer G, Rauch R, et al. Prophylaxis of thromboembolic complications after the Fontan operation (total cavopulmonary anastomosis). J Thorac Cardiovasc Surg. 2005;129:569–75.

    PubMed  Google Scholar 

  121. Zhou Z, Malhotra SP, Yu X, et al. Moderate altitude is not associated with adverse postoperative outcomes for patients undergoing bidirectional cavopulmonary anastomosis and Fontan operation: a comparative study among Denver, Edmonton, and Toronto. J Thorac Cardiovasc Surg. 2013;pii: S0022–5223(12)01664–9.

    Google Scholar 

  122. Gottlieb JL, McDonnell WM, Day RW, Yetman AT. Moving on up: is it safe for patients to relocate to higher altitude following the Fontan procedure? Pediatr Cardiol. 2012;33:1411–4.

    PubMed  Google Scholar 

  123. Darst JR, Vezmar M, McCrindle BW, et al. Living at an altitude adversely affects exercise capacity in Fontan patients. Cardiol Young. 2010;20:593–601.

    PubMed Central  PubMed  Google Scholar 

  124. Cai J, Su Z, Shi Z, et al. Nitric oxide and milrinone: combined effect on pulmonary circulation after Fontan-type procedure: a prospective, randomized study. Ann Thorac Surg. 2008;86:882–8; discussion −8.

    PubMed  Google Scholar 

  125. Goldberg DJ, French B, McBride MG, et al. Impact of oral sildenafil on exercise performance in children and young adults after the Fontan operation: a randomized, double-blind, placebo-controlled, crossover trial. Circulation. 2011;123:1185–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Morchi GS, Ivy DD, Duster MC, et al. Sildenafil increases systemic saturation and reduces pulmonary artery pressure in patients with failing Fontan physiology. Congenit Heart Dis. 2009;4:107–11.

    PubMed Central  PubMed  Google Scholar 

  127. Gewillig M, Brown SC, Eyskens B, et al. The Fontan circulation: who controls cardiac output? Interact Cardiovasc Thorac Surg. 2010;10:428–33.

    PubMed  Google Scholar 

  128. Peters NS, Somerville J. Arrhythmias after the Fontan procedure. Br Heart J. 1992;68:199–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Sinha P, Zurakowski D, He D, et al. Intra/extracardiac fenestrated modification leads to lower incidence of arrhythmias after the Fontan operation. J Thorac Cardiovasc Surg. 2013;145:678–82.

    PubMed  Google Scholar 

  130. Idorn L, Jensen AS, Juul K, et al. Thromboembolic complications in Fontan patients: population-based prevalence and exploration of the etiology. Pediatr Cardiol. 2013;34:262–72.

    CAS  PubMed  Google Scholar 

  131. Odegard KC, McGowan Jr FX, Zurakowski D, et al. Coagulation factor abnormalities in patients with single-ventricle physiology immediately prior to the Fontan procedure. Ann Thorac Surg. 2002;73:1770–7.

    PubMed  Google Scholar 

  132. Canter CE. Preventing thrombosis after the Fontan procedure not there yet. J Am Coll Cardiol. 2011;58:652–3.

    PubMed  Google Scholar 

  133. Monagle P, Cochrane A, Roberts R, et al. A multicenter, randomized trial comparing heparin/warfarin and acetylsalicylic acid as primary thromboprophylaxis for 2 years after the Fontan procedure in children. J Am Coll Cardiol. 2011;58:645–51.

    CAS  PubMed  Google Scholar 

  134. Anderson PA, Sleeper LA, Mahony L, et al. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol. 2008;52:85–98.

    PubMed  Google Scholar 

  135. Costello JM, Steinhorn D, McColley S, Gerber ME, Kumar SP. Treatment of plastic bronchitis in a Fontan patient with tissue plasminogen activator: a case report and review of the literature. Pediatrics. 2002;109:e67.

    PubMed  Google Scholar 

  136. Griffiths ER, Kaza AK, Wyler von Ballmoos MC, et al. Evaluating failing Fontans for heart transplantation: predictors of death. Ann Thorac Surg. 2009;88:558–63. discussion 63–4.

    PubMed Central  PubMed  Google Scholar 

  137. Jacobs ML, Pelletier G. Late complications associated with the Fontan circulation. Cardiol Young. 2006;16 Suppl 1:80–4.

    PubMed  Google Scholar 

  138. Mertens L, Hagler DJ, Sauer U, Somerville J, Gewillig M. Protein-losing enteropathy after the Fontan operation: an international multicenter study. PLE study group. J Thorac Cardiovasc Surg. 1998;115:1063–73.

    CAS  PubMed  Google Scholar 

  139. Ostrow AM, Freeze H, Rychik J. Protein-losing enteropathy after fontan operation: investigations into possible pathophysiologic mechanisms. Ann Thorac Surg. 2006;82:695–700.

    PubMed  Google Scholar 

  140. Wakeham MK, Van Bergen AH, Torero LE, Akhter J. Long-term treatment of plastic bronchitis with aerosolized tissue plasminogen activator in a Fontan patient. Pediatr Crit Care Med. 2005;6:76–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja M. Gist DO, MA, MSCS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Gist, K.M., Schwartz, S.M., Krawczeski, C.D., Nelson, D.P., Wheeler, D.S. (2014). Single Ventricle Lesions. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6356-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6356-5_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6355-8

  • Online ISBN: 978-1-4471-6356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics