Skip to main content

Shunt Lesions

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Defects in the atrial or ventricular septum or abnormal communications between the great arteries can lead to left to right shunts. This chapter describes the key anatomic features, pathophysiology, clinical features and management options for defects of the atrial and ventricular septum, patent ductus arteriosus, and aortopulmonary window.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mierop LHS. Embryology of the atrioventricular canal region and pathogenesis of endocardial cushion defects. In: Feldt RH, McGoon DC, Ongley PA, et al., editors. Atrioventricular canal defects. Philadelphia: WB Saunders; 1976. p. 1–12.

    Google Scholar 

  2. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59(1):17–20.

    CAS  PubMed  Google Scholar 

  3. Van Praagh S, Carrera ME, Sanders SP, Mayer JE, Van Praagh R. Sinus venosus defects: unroofing of the right pulmonary veins—anatomic and echocardiographic findings and surgical treatment. Am Heart J. 1994;128:365–79.

    PubMed  Google Scholar 

  4. Blom NA, Gittenberger-de Groot AC, Jongeneel TH, DeRuiter MC, Poelmann RE, Ottenkamp J. Normal development of the pulmonary veins in human embryos and formulation of a morphogenetic concept for sinus venosus defects. Am J Cardiol. 2001;87(3):305–9.

    CAS  PubMed  Google Scholar 

  5. Al Zaghal AM, Li J, Anderson RH, Lincoln C, Shore D, Rigby ML. Anatomical criteria for the diagnosis of sinus venosus defects. Heart. 1997;78(3):298–304.

    PubMed Central  PubMed  Google Scholar 

  6. Li J, Al Zaghal AM, Anderson RH. The nature of the superior sinus venosus defect. Clin Anat. 1998;11(5):349–52.

    CAS  PubMed  Google Scholar 

  7. Butts RJ, Crean AM, Hlavacek AM, Spicer DE, Cook AC, Oechslin EN, et al. Veno-venous bridges: the forerunners of the sinus venosus defect. Cardiol Young. 2011;24:1–8.

    Google Scholar 

  8. Porter CJ, Edwards W. Atrial septal defects. In: Allen HD, Driscoll DJ, Shaddy RE, Feltes TF, editors. Moss and Adams’ heart disease in infants, children and adolescents. 7th ed. London: Wolters Kluwer, Lippincott Williams and Wilkins; 2008. p. 632–45.

    Google Scholar 

  9. Vaughan CJ, Basson CT. Molecular determinants of atrial and ventricular septal defects and patent ductus arteriosus. Am J Med Genet. 2000;97(4):304–9.

    CAS  PubMed  Google Scholar 

  10. Schott J-J, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, et al. Congenital heart disease caused by mutations in the transcription factor Nkx2–5. Science. 1998;281:108–11.

    CAS  PubMed  Google Scholar 

  11. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104:1567–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.

    CAS  PubMed  Google Scholar 

  13. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, et al. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.

    CAS  PubMed  Google Scholar 

  14. Basson CT, Huang T, Lin RC, Bachinsky DR, Weremowicz S, Vaglio A, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A. 1999;96(6):2919–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997;15:21–9.

    PubMed  Google Scholar 

  16. Rudolph AM. Congenital diseases of the heart. Clinical-physiological considerations. 3rd ed. Chichester: U.K Wiley-Blackwell; 2009.

    Google Scholar 

  17. Hoffman JIE. The natural and unnatural history of congenital heart disease. Wiley Blackwell; NJ, USA 2009.

    Google Scholar 

  18. Craig RJ, Selzer A. Natural history and prognosis of atrial septal defect. Circulation. 1968;37:805–15.

    CAS  PubMed  Google Scholar 

  19. Campbell M. Natural history of atrial septal defect. Br Heart J. 1970;32(6):820–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Campbell M, Neill C, Suzman S. The prognosis of atrial septal defect. Br Med J. 1957;1:1375–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Radzik D, Davignon A, van Doesburg N, et al. Predictive factors for spontaneous closure of atrial septal defects diagnosed in the first 3 months of life. J Am Coll Cardiol. 1993;22:851–3.

    CAS  PubMed  Google Scholar 

  22. Helgason H, Jonsdottir G. Spontaneous closure of atrial septal defects. Pediatr Cardiol. 1999;20:195–9.

    CAS  PubMed  Google Scholar 

  23. Cockerham JT, Martin TC, Gutierrez FR, et al. Spontaneous closure of secundum atrial septal defect in infants and young children. Am J Cardiol. 1983;52:1267–71.

    CAS  PubMed  Google Scholar 

  24. Hanslik A, Pospisil U, Salzer-Muhar U, Greber-Platzer S, Male C. Predictors of spontaneous closure of isolated secundum atrial septal defect in children: a longitudinal study. Pediatrics. 2006;118:1560–5.

    PubMed  Google Scholar 

  25. Fukazawa M, Fukushige J, Ueda K. Atrial septal defects in neonates with special reference to spontaneous closure. Am Heart J. 1988;116:123–7.

    CAS  PubMed  Google Scholar 

  26. Feltes TF, Bacha E, Beekman III RH, Cheatham JP, Feinstein JA, Gomes AS, et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2607–52.

    PubMed  Google Scholar 

  27. Kirklin JW, Barrat-Boyes BG. Cardiac surgery. 3rd ed. Edinburgh: Churchill Livingstone; 2003.

    Google Scholar 

  28. Gibbon Jr JH. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med. 1954;37:171–80.

    PubMed  Google Scholar 

  29. Hagl C, Stock U, Haverich A, Steinhoff G. Evaluation of different minimally invasive techniques in pediatric cardiac surgery: is a full sternotomy always a necessity? Chest. 2001;119(2):622–7.

    CAS  PubMed  Google Scholar 

  30. Hopkins RA, Bert AA, Buchholz B, Guarino K, Myers M. Surgical patch closure of atrial septal defects. Ann Thorac Surg. 2004;77:2144–9.

    PubMed  Google Scholar 

  31. Karthekeyan BR, Vakamudi M, Thangavelu P, Sulaiman S, SyamaSundar A, Muthu Kumar S. Lower ministernotomy and fast tracking for atrial septal defect. Asian Cardiovasc Thorac Ann. 2010;18:166–9.

    PubMed  Google Scholar 

  32. Murphy JG, Gersh BJ, McGoon MD, Mair DD, Porter CJ, Duane M, Ilstrup DM, et al. Long-term outcome after surgical repair of isolated atrial septal defect—follow-up at 27 to 32 years. N Engl J Med. 1990;323:1645–50.

    CAS  PubMed  Google Scholar 

  33. King TD, Thompsn SL, Steiner C, Mill NL. Secundum atrial septal defect. Nonoperative closure during cardiac catheterization. JAMA. 1976;235(23):2506–9.

    CAS  PubMed  Google Scholar 

  34. Spies C, Cao QL, Hijazi ZM. Transcatheter closure of congenital and acquired septal defects. Eur Heart J Suppl. 2010;12(suppl E):E24–34.

    Google Scholar 

  35. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults with Congenital Heart Disease). Circulation. 2008;118:714–833.

    Google Scholar 

  36. Berger F, Ewert P, Björnstad PG, Dähnert I, Krings G, Brilla-Austenat I, et al. Transcatheter closure as standard treatment for most interatrial defects: experience in 200 patients treated with the AmplatzerTMSeptal Occluder. Cardiol Young. 1999;9(5):468–73.

    CAS  PubMed  Google Scholar 

  37. Du ZD, Hijazi ZM, Kleinman CS, Silverman NH, Larntz K. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults. J Am Coll Cardiol. 2002;39:1836–44.

    PubMed  Google Scholar 

  38. Jones TK, Latson LA, Zahn E, Fleishman CE, Jacobson J, Vincent R, Kanter K. Results of the U.S. multicenter pivotal study of the HELEX septal occluder for percutaneous closure of secundum atrial septal defects. J Am Coll Cardiol. 2007;49:2215–21.

    PubMed  Google Scholar 

  39. Spies C, Timmermanns I, Schrader R. Transcatheter closure of secundum atrial septal defects in adults with the Amplatzer septal occluder: intermediate and long-term results. Clin Res Cardiol. 2007;96:340–6.

    PubMed  Google Scholar 

  40. Hughes M, Maskell G, Goh T, Wilkinson J. Prospective comparison of costs and short term health outcomes of surgical versus device closure of atrial septal defect in children. Heart. 2002;88:67–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Chun DS, Turrentine MW, Moustapha A, Hoyer MH. Development of aorta-to-right atrial fistula following closure of secundum atrial septal defect using the Amplatzer septal occluder. Catheter Cardiovasc Interv. 2003;58:246–51.

    PubMed  Google Scholar 

  42. Amin Z, Hijazi ZM, Bass JL, Cheatham JP, Hellenbrand WE, Kleinman CS. Erosion of Amplatzer septal occluder device after closure of secundum atrial septal defects: review of registry of complications and recommendations to minimize future risk. Catheter Cardiovasc Interv. 2004;63:496–502.

    PubMed  Google Scholar 

  43. Masura J, Gavora P, Podnar T. Long-term outcome of transcatheter secundum-type atrial septal defect closure using Amplatzer septal occluders. J Am Coll Cardiol. 2005;45:505–7.

    PubMed  Google Scholar 

  44. Knepp MD, Rocchini AP, Lloyd TR, Aiyagari RM. Long-term follow up of secundum atrial septal defect closure with the Amplatzer septal occluder. Congenit Heart Dis. 2010;5(1):32–7.

    PubMed  Google Scholar 

  45. Warden HE, Gustafson RA, Tarnay TJ, Neal WA. An alternative method for repair of partial anomalous pulmonary venous connection to the superior vena cava. Ann Thorac Surg. 1984;38:601–5.

    CAS  PubMed  Google Scholar 

  46. Attenhofer Jost CH, Connolly HM, Danielson GK, Bailey KR, Schaff HV, Shen WK, et al. Sinus venosus atrial septal defect. Long-term postoperative outcome for 115 patients. Circulation. 2005;112:1953–8.

    PubMed  Google Scholar 

  47. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    PubMed  Google Scholar 

  48. Reller MD, Strickland MJ, Riehle-Colarusso T. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr. 2008;153(6):807–13.

    PubMed Central  PubMed  Google Scholar 

  49. Nora JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic-environmental interaction. Circulation. 1968;38:604–17.

    CAS  PubMed  Google Scholar 

  50. Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:2995–3014.

    PubMed  Google Scholar 

  51. Pierpont ME, Basson CT, Benson DW, Gelb BD, Giglia TM, Goldmuntz E, et al. Genetic basis for congenital heart defects: current knowledge—a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young, endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38.

    PubMed  Google Scholar 

  52. Burd L, Deal E, Rios R, Adickes E, Wynne J, Klug MG. Congenital heart defects and fetal alcohol spectrum disorders. Congenit Heart Dis. 2007;2(4):250–5.

    PubMed  Google Scholar 

  53. Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature. 2000;407:221–6.

    CAS  PubMed  Google Scholar 

  54. Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008;451:943–8.

    CAS  PubMed  Google Scholar 

  55. Benson DW. Genetic origins of pediatric heart disease. Pediatr Cardiol. 2010;31:422–9.

    PubMed  Google Scholar 

  56. Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z, et al. GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet. 2008;51:527–35. Abstract.

    PubMed  Google Scholar 

  57. Wang J, Xin YF, Liu XY, Liu ZM, Wang XZ, Yang YQ. A novel NKX2-5 mutation in familial ventricular septal defect. Int J Mol Med. 2011;27(3):369–75.

    CAS  PubMed  Google Scholar 

  58. Liu C, Shen A, Li X, Jiao WW, Bai S, Yuan F, et al. Association of TBX5 gene polymorphism with ventricular septal defect in the Chinese Han population. Chin Med J (Engl). 2009;122:30–4.

    CAS  Google Scholar 

  59. Goor AD, Edwards EJ, Lillehei W. The development of the interventricular septum of the human heart: correlative morphogenetic study. Chest. 1970;58:453–67.

    CAS  PubMed  Google Scholar 

  60. De La Cruz MV, Moreno-Rodriguez R. Embryological development of the apical trabeculated region of both ventricles: the contribution of the primitive interventricular septum in ventricular septation. In: De La Cruz MV, Markwald R, editors. Living morphogenesis of the heart. Basel: Birkhäuser; 1998. p. 120–30.

    Google Scholar 

  61. Soto B, Becker AE, Moulaert AJ, Lie JT, Anderson RH. Classification of ventricular septal defects. Br Heart J. 1980;43(3):332–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Lincoln C, Jamieson S, Joseph M, Shinebourne E, Anderson RH. Transatrial repair of ventricular septal defects with reference to their anatomic classification. J Thorac Cardiovasc Surg. 1977;74(2):183–90.

    CAS  PubMed  Google Scholar 

  63. Tatsuno K, Ando M, Takao A, Hatsune K, Konno S. Diagnostic importance of aortography in conal ventricular-septal defect. Am Heart J. 1975;89(2):171–7.

    CAS  PubMed  Google Scholar 

  64. Lister G, Hellenbrand WE, Kleinman CS, Talner NS. Physiologic effects of increasing hemoglobin concentration in left-to-right shunting in infants with ventricular septal defects. N Engl J Med. 1982;306:502–6.

    CAS  PubMed  Google Scholar 

  65. Hoffman JI, Rudolph AM. Natural history of ventricular septal defects in infancy. Am J Cardiol. 1965;16(5):634–53.

    CAS  PubMed  Google Scholar 

  66. Axt-Fliedner R, Schwarze A, Smrcek J, Germer U, Krapp M, Gembruch U. Isolated ventricular septal defects detected by color Doppler imaging: evolution during fetal and first year of postnatal life. Ultrasound Obstet Gynecol. 2006;27(3):266–73.

    CAS  PubMed  Google Scholar 

  67. Paladini D, Palmieri S, Lamberti A, Teodoro A, Martinelli P, Nappi C. Characterization and natural history of ventricular septal defects in the fetus. Ultrasound Obstet Gynecol. 2000;16(2):118–22.

    CAS  PubMed  Google Scholar 

  68. Turner S, Hunter S, Wyllie J. The natural history of ventricular septal defects. Arch Dis Child. 1999;81(5):413–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Yokoyama M, Takao A, Sakakibara S. Natural history and surgical indications of ventricular septal defect. Am Heart J. 1970;80(5):597–605.

    CAS  PubMed  Google Scholar 

  70. Hirashi S, Agata Y, Nowatari M, Oguchi K, Misawa H, Hirota H, et al. Incidence and natural course of trabecular ventricular septal defect: two-dimensional echocardiography and color Doppler flow imaging study. J Pediatr. 1992;120(3):409–15.

    Google Scholar 

  71. Shirali GS, Smith EO, Geva T. Quantitation of echocardiographic predictors of outcome in infants with isolated ventricular septal defect. Am Heart J. 1995;130(6):1228–35.

    CAS  PubMed  Google Scholar 

  72. Eroglu S, Oztunc F, Saltik L, Bakari S, Dedeoğlu S, Ahunbay G. Evolution of ventricular septal defect with special reference to spontaneous closure rate, subaortic ridge and aortic valve prolapse. Pediatr Cardiol. 2003;24(1):31–5.

    CAS  PubMed  Google Scholar 

  73. Alpert BS, Mellits ED, Rowe RD. Spontaneous closure of small ventricular septal defects. Probability rates in the first five years of life. Am J Dis Child. 1973;125(2):194–6.

    CAS  PubMed  Google Scholar 

  74. Collins G, Calder L, Rose V, Kidd L, Keith J. Ventricular septal defect: clinical and hemodynamic changes in the first five years of life. Am Heart J. 1972;84(5):695–705.

    CAS  PubMed  Google Scholar 

  75. Lucas Jr RV, Adams Jr P, Anderson RC, Meyne NG, Lillehei CW, Varco RL. The natural history of isolated ventricular septal defect: a serial physiologic study. Circulation. 1961;24:1372–87.

    PubMed  Google Scholar 

  76. Arcilla RA, Agustsson MH, Bicoff JP, Lynfield J, Weinberg Jr M, Fell EH, et al. Further observations on the natural history of isolated ventricular septal defects in infancy and childhood: serial cardiac catheterization studies in 75 patients. Circulation. 1963;28:560–71.

    CAS  PubMed  Google Scholar 

  77. Bloomfield DK. The natural history of ventricular septal defect in patients surviving infancy. Circulation. 1964;29:914–55.

    CAS  PubMed  Google Scholar 

  78. Selzer A, Laqueur GL. The Eisenmenger complex and its relation to the uncomplicated defect of the ventricular septum; review of 35 autopsied cases of Eisenmenger’s complex, including two new cases. Arch Intern Med. 1951;87:218–41.

    CAS  Google Scholar 

  79. Kleinman CS, Tabibian M, Starc TJ, Hsu DT, Gersony WM. Spontaneous regression of left ventricular dilation in children with restrictive ventricular septal defects. J Pediatr. 2007;150(6):583–6.

    PubMed  Google Scholar 

  80. Hoffman JIE, Rudolph AM. Increasing pulmonary vascular resistance during infancy in association with ventricular septal defect. Pediatrics. 1966;38(2):220–30.

    CAS  PubMed  Google Scholar 

  81. Muller Jr WH, Danimann Jr JF. The treatment of certain congenital malformations of the heart by the creation of pulmonic stenosis to reduce pulmonary hypertension and excessive pulmonary blood flow; a preliminary report. Surg Gynecol Obstet. 1952;95(2):213–9.

    PubMed  Google Scholar 

  82. Lillehei CW, Cohen M, Warden HE, Ziegler NR, Varco RL. The results of direct vision closure of ventricular septal defects in eight patients by means of controlled cross circulation. Surg Gynecol Obstet. 1955;101(4):446–66.

    CAS  PubMed  Google Scholar 

  83. Scully BB, Morales DL, Zafar F, McKenzie ED, Fraser CD, Heinle JS. Current expectations for surgical repair of isolated ventricular septal defects. Ann Thorac Surg. 2010;89(2):544–9.

    PubMed  Google Scholar 

  84. Andersen H, de Leval MR, Tsang VT, Elliot MJ, Anderson RH, Cook AC. Is complete heart block after surgical closure of ventricular septum defects still an issue? Ann Thorac Surg. 2006;82(3):948–56.

    PubMed  Google Scholar 

  85. Bristow JD, Kassebaum DG, Starr A, Griswold HE. Observations on the occurrence of right bundle-branch block following open repair of ventricular septal defects. Circulation. 1960;22:896–900.

    Google Scholar 

  86. Ziady GM, Hallidie-Smith KA, Goodwin JF. Conduction disturbances after surgical closure of ventricular septal defect. Br Heart J. 1972;34(12):II99–204.

    Google Scholar 

  87. Weindling SN, Saul JP, Gamble WJ, Mayer JE, Wessel D, Walsh EP. Duration of complete atrioventricular block after congenital heart disease surgery. Am J Cardiol. 1998;82(4):525–7.

    CAS  PubMed  Google Scholar 

  88. Moss AJ, Klyman G, Emmanoullides GC. Late onset complete heart block. Newly recognized sequela of cardiac surgery. Am J Cardiol. 1972;30(8):884–7.

    CAS  PubMed  Google Scholar 

  89. Fukuda T, Nakamura Y, Iemura J, Oku H. Onset of complete atrioventricular block 15 years after ventricular septal surgery. Pediatr Cardiol. 2002;23(1):80–3.

    CAS  PubMed  Google Scholar 

  90. Lock JE, Block PC, McKay RG, Baim DS, Keane JF. Transcatheter closure of ventricular septal defects. Circulation. 1988;78:361–8.

    CAS  PubMed  Google Scholar 

  91. Carminati M, Butera G, Chessa M, Giovanni J, Fisher G, Gewillig M, et al. Transcatheter closure of congenital ventricular septal defects: results of the European Registry. Eur Heart J. 2007;28(19):2361–8.

    PubMed  Google Scholar 

  92. Holzer R, Balzer D, Cao QL, Lock K, Hijazi ZM, Amplatzer Muscular Ventricular Septal Defect Investigators. Device closure of muscular ventricular septal defects using the Amplatzer muscular ventricular septal defect occluder. Immediate and mid-term results of a US registry. J Am Coll Cardiol. 2004;43(7):1257–63.

    PubMed  Google Scholar 

  93. Fu YC, Bass J, Amin Z, Radtke W, Cheatham JP, Hellenbrand WE, Balzer D, Cao QL, Hijazi ZM. Transcatheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD occluder: results of the U.S. phase I trial. J Am Coll Cardiol. 2006;47:319–25.

    PubMed  Google Scholar 

  94. Bacha EA, Cao QL, Galantowicz ME, Cheatham JP, Fleishman CE, Weinstein SW, et al. Multicenter experience with periventricular device closure of muscular ventricular septal defects. Pediatr Cardiol. 2005;26(2):169–75.

    CAS  PubMed  Google Scholar 

  95. Crossland DS, Wilkinson JL, Cochrane AD, d’Udekem Y, Brizard CP, Lane GK. Initial results of primary device closure of large muscular ventricular septal defects in early infancy using perventricular access. Catheter Cardiovasc Interv. 2008;72(3):386–91.

    CAS  PubMed  Google Scholar 

  96. Shiraishi H, Yanagisawa M. Bidirectional flow through the ductus arteriosus in normal newborns: evaluation by Doppler color flow imaging. Pediatr Cardiol. 1991;12(4):201–5.

    CAS  PubMed  Google Scholar 

  97. Krichenko A, Benson LN, Burrows P, Möes CA, McLaughlin P, Freedom RM. Angiographic classification of the isolated, persistently patent ductus arteriosus and implications for percutaneous catheter occlusion. Am J Cardiol. 1989;63:877–9.

    CAS  PubMed  Google Scholar 

  98. Kennedy JA, Clark SL. Observations on the physiological reactions of the ductus arteriosus. Am J Physiol. 1942;136:140–4.

    Google Scholar 

  99. Oberhansli-Weiss I, Heymann MA, Rudolph AM, Melmon KL. The pattern and mechanisms of response of the ductus arteriosus and umbilical artery to oxygen. Pediatr Res. 1972;6:693–700.

    CAS  PubMed  Google Scholar 

  100. Coceani F, Olley PM. The response of the ductus arteriosus to prostaglandins. Can J Physiol Pharmacol. 1973;51:220–5.

    CAS  PubMed  Google Scholar 

  101. Takahashi Y, Roman C, Chemtob S, Tse MM, Lin E, Heymann MA, et al. Cyclo-oxygenase-2 inhibitors constrict the fetal lamb ductus arteriosus both in vitro and in vivo. Am J Physiol. 2000;278:R1496–505.

    CAS  Google Scholar 

  102. Clyman RI, Mauray F, Roman C, Rudolph AM. PGE2 is a more potent vasodilator of the lamb ductus arteriosus than is either PGI2 or 6 keto PGF1 alpha. Prostaglandins. 1978;16:259–64.

    CAS  PubMed  Google Scholar 

  103. Clyman RI, Waleh N, Black SM, Riemer RK, Mauray F, Chen YQ. Regulation of ductus arteriosus patency by nitric oxide in fetal lambs: the role of gestation, oxygen tension, and vasa vasorum. Pediatr Res. 1998;43:633–44.

    CAS  PubMed  Google Scholar 

  104. Mentzer Jr RM, Ely SW, Lasley RD, Mainwaring RD, Wright Jr EM, Berne RM. Hormonal role of adenosine in maintaining patency of the ductus arteriosus in fetal lambs. Ann Surg. 1985;202:223–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Fay FS, Cooke PH. Guinea pig ductus arteriosus: irreversible closure after birth. Am J Physiol. 1972;222:841–9.

    CAS  PubMed  Google Scholar 

  106. Gittenberger-de Groot AC, Strengers JL, Mentink M, Poelmann RE, Patterson DF. Histologic studies on normal and persistent ductus arteriosus in the dog. J Am Coll Cardiol. 1985;6(2):394–404.

    CAS  PubMed  Google Scholar 

  107. Desligneres S, Larroche JC. Ductus arteriosus. I. Anatomical and histological study of its development during the second half of gestation and its closure after birth. II. Histological study of a few cases of patent ductus arteriosus in infancy. Biol Neonate. 1970;16(5):278–96.

    CAS  PubMed  Google Scholar 

  108. Ho SY, Anderson RH. Anatomical closure of the ductus arteriosus; a study of 35 specimens. J Anat. 1979;128:829–36.

    Google Scholar 

  109. Alzamora-Castro V, Battilana G, Abigattas R, Sialer S. Patent ductus arteriosus and high altitude. Am J Cardiol. 1960;5:761–3.

    Google Scholar 

  110. Mullins CE, Pagotto L. Patent ductus arteriosus. In: The science and practice of pediatric cardiology. Baltimore: MD, USA Williams & Wilkins; 1998. p. 1181–97.

    Google Scholar 

  111. Martin R, Banner N, Radley-Smith R. Familial persistent ductus arteriosus. Arch Dis Child. 1986;61:906–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wei J, Yau-Chung C, Go-Chain K, et al. Familial patent ductus arteriosus. Am J Cardiol. 1984;54:235–6.

    CAS  PubMed  Google Scholar 

  113. Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet. 2000;25:42–6.

    CAS  PubMed  Google Scholar 

  114. Gibson S, Lewis K. Congenital heart disease following maternal rubella during pregnancy. Am J Dis Child. 1952;83:117–9.

    Google Scholar 

  115. Hoffman JIE, Rudolph AM, Heymann MA. Pulmonary vascular disease with congenital heart lesions: pathologic features and causes. Circulation. 1981;64:873–7.

    CAS  PubMed  Google Scholar 

  116. Campbell N. Natural history of persistent ductus arteriosus. Br Heart J. 1968;30(1):4–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Gross RE, Hubbard JP. Surgical ligation of a patent ductus arteriosus. A report of first successful case. JAMA. 1939;112:729–31.

    Google Scholar 

  118. Vanamo K, Berg E, Kokki H, Tikanoja T. Video-assisted thoracoscopic versus open surgery for persistent ductus arteriosus. J Pediatr Surg. 2006;41:1226–9.

    PubMed  Google Scholar 

  119. Villa E, Folliguet T, Magnano D, VandenEynden F, Le Bret E, Laborde F. Video-assisted thoracoscopic clipping of patent ductus arteriosus: close to the gold standard and minimally invasive competitor of percutaneous techniques. J Cardiovasc Med (Hagerstown). 2006;7:210–5.

    Google Scholar 

  120. Ghani SA, Hashim R. Surgical management of patent ductus arteriosus. A review of 413 cases. J R Coll Surg Edinb. 1989;34:33–6.

    CAS  PubMed  Google Scholar 

  121. Balzer DT, Spray TL, McMullin D, Cottingham W, Canter CE. Endarteritis associated with a clinically silent patent ductus arteriosus. Am Heart J. 1993;125:1192–3.

    CAS  PubMed  Google Scholar 

  122. Ozkokeli M, Ates M, Uslu N, Akcar M. Pulmonary and aortic valve endocarditis in an adult patient with silent patent ductus arteriosus. Jpn Heart J. 2004;45(6):1057–61.

    PubMed  Google Scholar 

  123. Onji K, Matsuura W. Pulmonary endarteritis and subsequent pulmonary embolism associated with clinically silent patent ductus arteriosus. Intern Med. 2007;46(19):1663.

    PubMed  Google Scholar 

  124. Huggon IC, Qureshi SA. Is the prevention of infective endarteritis a valid reason for closure of the patent arterial duct? Eur Heart J. 1997;18(3):364.

    CAS  PubMed  Google Scholar 

  125. Thilén U, Aström-Olsson K. Does the risk of infective endarteritis justify routine patent ductus arteriosus closure? Eur Heart J. 1997;18(3):503.

    PubMed  Google Scholar 

  126. Hijazi ZM, Geggel RL. Results of anterograde transcatheter closure of patent ductus arteriosus using single or multiple Gianturco coils. Am J Cardiol. 1994;74:925–9.

    CAS  PubMed  Google Scholar 

  127. Alwi M, Kang LM, Samion H, Latiff HA, Kandavel G, Zambahari R. Transcatheter occlusion of native persistent ductus arteriosus using conventional gianturco coils. Am J Cardiol. 1997;79:1430–2.

    CAS  PubMed  Google Scholar 

  128. Lloyd TR, Beekman RH, Moore JW, Hijazi ZM, Hellenbrand WE, Sommer RJ, Wiggins JW, Zamora R, Vincent RN, For the PDA Coil Registry Investigators. The PDA coil registry: report of the first 535 procedures. Circulation. 1995;92(suppl I):I–380.

    Google Scholar 

  129. Masura J, Walsh KP, Thanopoulous B, Chan C, Bass J, Goussous Y, Gavora P, Hijazi ZM. Catheter closure of moderate- to large-sized patent ductus arteriosus using the new Amplatzer duct occluder: immediate and short-term results. J Am Coll Cardiol. 1998;31:878–82.

    CAS  PubMed  Google Scholar 

  130. Pass RH, Hijazi Z, Hsu DT, Lewis V, Hellenbrand WE. Multicenter USA Amplatzer patent ductus arteriosus occlusion device trial: initial and one-year results. J Am Coll Cardiol. 2004;44:513–9.

    PubMed  Google Scholar 

  131. Spies C, Ujivari F, Schrader R. Transcatheter closure of a 22 mm patent ductus arteriosus with an Amplatzer atrial septal occluder. Catheter Cardiovasc Interv. 2005;64:352–5.

    PubMed  Google Scholar 

  132. Patel HT, Cao QL, Rhodes J, Hijaziet ZM. Long- term outcome of transcatheter closure of small to large patent ductus arteriosus. Catheter Cardiovasc Interv. 1999;47:457–61.

    CAS  PubMed  Google Scholar 

  133. Magee AG, Huggon IC, Seed PT, Qureshi SA, Tynan M. Transcatheter coil occlusion of the arterial duct; results of the European Registry. Eur Heart J. 2001;22:1817–21.

    CAS  PubMed  Google Scholar 

  134. Kutsche LM, Van Mierop LH. Anatomy and pathogenesis of aorticopulmonary septal defect. Am J Cardiol. 1987;59:443–7.

    CAS  PubMed  Google Scholar 

  135. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science. 1983;220:1059–61.

    CAS  PubMed  Google Scholar 

  136. Mori K, Ando M, Takao A, Ishikawa S, Imai Y. Distal type of aortopulmonary window. Report of 4 cases. Br Heart J. 1978;40:681–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Moore P, Brook MM, Heymann M. Patent ductus arteriosus and aortopulmonary window. In: Allen HD, Driscoll DJ, Shaddy RE, Feltes TF, editors. Moss and Adams’s heart disease in infants, children and adolescents including the fetus and young adult. 7th ed. Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins; 2008. p. 683–702.

    Google Scholar 

  138. Morrow AG, Greenfield LJ, Braunwald E. Congenital aortopulmonary septal defect: clinical and hemodynamic findings, surgical technic, and results of operative correction. Circulation. 1962;25:463–76.

    CAS  PubMed  Google Scholar 

  139. Tkebuchava T, von Segesser LK, Vogt PR, Bauersfeld U, Jenni R, Kunzli A, et al. Congenital aortopulmonary window: diagnosis, surgical technique and long-term results. Eur J Cardiothorac Surg. 1997;11:293–7.

    CAS  PubMed  Google Scholar 

  140. Erez E, Dagan O, Georghiou GP, Gelber O, Vidne BA, Birk E. Surgical management of aortopulmonary window and associated lesions. Ann Thorac Surg. 2004;77:484–7.

    PubMed  Google Scholar 

  141. Bagtharia R, Trivedi KR, Burkhart HM, Williams WG, Freedom RM, Van Arsdell GS, et al. Outcomes for patients with an aortopulmonary window, and the impact of associated cardiovascular lesions. Cardiol Young. 2004;14:473–80.

    PubMed  Google Scholar 

  142. Konstantinov IE, Karamlou T, Williams WG, Quaegebeur JM, del Nido PJ, Spray TL, et al. Surgical management of aortopulmonary window associated with interrupted aortic arch: a Congenital Heart Surgeons Society study. J Thorac Cardiovasc Surg. 2006;131:1136–41.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganga Krishnamurthy MBBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Krishnamurthy, G., Cheung, E.W., Hellenbrand, W.E. (2014). Shunt Lesions. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6356-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6356-5_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6355-8

  • Online ISBN: 978-1-4471-6356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics