Skip to main content

Applied Respiratory Physiology

  • Chapter
  • First Online:
  • 2996 Accesses

Abstract

Understanding and managing respiratory failure remains a cornerstone of critical care practice, as over half of all admissions to pediatric critical care units are related to respiratory issues. The unique aspects of a developing pulmonary system demand an in-depth knowledge of these changes and their impact on diagnostics and therapeutics. Only by understanding the normal function of the respiratory system is the critical care physician able to begin to formulate mechanisms for supporting a failing physiology.

In this chapter, we describe the developmental anatomy of the lung, with emphasis on the fact that the number of alveoli continues to increase long after birth. We describe the developmental mechanics of breathing, with particular reference to elastic properties of the lung and chest wall, compliance of the lung and chest wall, airway resistance, and lung volumes. Next, we describe the physiologic effects of mechanical ventilation. Factors that affect the maintenance of oxygenation are discussed, and the alveolar gas equation is introduced. We describe the maintenance of alveolar ventilation with a discussion of the included components of tidal volume, dead space and respiratory frequency. This knowledge is applied to a simplified model of the lung allowing an examination of the mechanics of ventilation. Using the single compartment model of the lung, the derivation of the equation of motion for the respiratory system and its implications for artificial mechanical ventilation are explored. Developmental anatomy and physiology of the pulmonary circulation is reviewed including physiologic and pharmacologic factors affecting pulmonary vascular pressures, resistances and the resultant changes in blood flow. A brief discussion of ventilation and perfusion relationships including the difference between shunt and venous admixture concludes this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O’Brodovich HM, Haddad GG. The functional basis of respiratory pathology and disease. In: Chernick V, Boat TF, editors. Kendig’s disorders of the respiratory tract in children. 6th ed. Philadelphia: W.B. Saunders; 1998. p. 34.

    Google Scholar 

  2. Gautier C. Developmental anatomy and physiology of the respiratory system. In: Taussig LM, Landau LI, editors. Pediatric respiratory medicine. St. Louis: Mosby; 1999. p. 24.

    Google Scholar 

  3. Kajekar R. Environmental factors and developmental outcomes in the lung. Pharmacol Ther. 2007;114:129–45.

    Article  CAS  PubMed  Google Scholar 

  4. O’Brodovich HM, Haddad GG. The functional basis of respiratory pathology and disease. In: Chernick V, Boat TF, editors. Kendig’s disorders of the respiratory tract in children. 6th ed. Philadelphia: W.B. Saunders; 1998. p. 36.

    Google Scholar 

  5. Zelenina M, Zelenin S, Aperia A. Water channels (Aquaporins) and their role for postnatal adaptation. Pediatr Res. 2005;57:47R–53R.

    Article  PubMed  Google Scholar 

  6. Boyden EA, Tompsett DH. The changing patterns in the developing lungs of infants. Acta Anat (Basel). 1965;61:164.

    Article  CAS  Google Scholar 

  7. Dunnil MS. Postnatal growth of the lung. Thorax. 1962;17:329.

    Article  Google Scholar 

  8. Macklem PT. Airway obstruction and collateral ventilation. Physiol Rev. 1971;51:368.

    CAS  PubMed  Google Scholar 

  9. Bodeyn EA. Development and growth of the airways. In: Hodson WA, editor. Development of the lung. New York: Marcel Dekker; 1977. p. 3.

    Google Scholar 

  10. Halfaer MA, Nichols DG, Rogers MC. Developmental physiology of the respiratory system. In: Rogers MC, Nichols DG, editors. Textbook of pediatric intensive care. 3rd ed. Baltimore: Williams & Wilkins; 1996. p. 100.

    Google Scholar 

  11. O’Brodovich HM, Haddad GG. The functional basis of respiratory pathology and disease. In: Chernick V, Boat TF, editors. Kendig’s disorders of the respiratory tract in children. 6th ed. Philadelphia: W.B. Saunders; 1998. p. 39.

    Google Scholar 

  12. Zapletal A, Paut T, Samanek M. Pulmonary elasticity in children and adolescents. J Appl Physiol. 1976;40:953–9.

    CAS  PubMed  Google Scholar 

  13. Keely FW, Fagan DG, Webster SI. Quantity and character of elastin in developing human lung parenchymal tissues of normal infants and infants with respiratory distress syndrome. J Lab Clin Med. 1977;90:982–9.

    Google Scholar 

  14. West JB. Respiratory physiology – the essentials. Philadelphia: Lippincott Williams & Wilkins; 2000. 83.

    Google Scholar 

  15. O’Brodovich HM, Haddad GG. The functional basis of respiratory pathology and disease. In: Chernick V, Boat TF, editors. Kendig’s disorders of the respiratory tract in children. 6th ed. Philadelphia: W.B. Saunders; 1998. p. 41.

    Google Scholar 

  16. Marchal F, Crance JP. Measurement of ventilatory system compliance in infants and young children. Respir Physiol. 1987;68:311–8.

    Article  CAS  PubMed  Google Scholar 

  17. Halfaer MA, Nichols DG, Rogers MC. Developmental physiology of the respiratory system. In: Rogers MC, Nichols DG, editors. Textbook of pediatric intensive care. 3rd ed. Baltimore: Williams & Wilkins; 1996. p. 121.

    Google Scholar 

  18. Guslits BG, Gaston SE, Bryan MH, England SJ, Bryan AC. Diaphragmatic work of breathing in premature human infants. J Appl Physiol. 1987;62:1410–5.

    CAS  PubMed  Google Scholar 

  19. Muller N, Volgyesi G, Calle D, Whitton J, Froese AB, Bryan MH, Bryan AC. Diaphragmatic muscle fatigue in the newborn. J Appl Physiol. 1979;46:688.

    CAS  PubMed  Google Scholar 

  20. Levitsky MG. Pulmonary physiology. New York: McGraw-Hill; 1991. p. 33.

    Google Scholar 

  21. West JB. Respiratory physiology – the essentials. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 92.

    Google Scholar 

  22. Hogg JC, Williams J, Richardson JB, Macklem PT, Thurlbeck WM. Age as factor in the distribution of lower airway conductance and in the pathologic anatomy of obstructive lung disease. N Engl J Med. 1970;282:1283.

    Article  CAS  PubMed  Google Scholar 

  23. West JB. Respiratory physiology – the essentials. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 94.

    Google Scholar 

  24. Halfaer MA, Nichols DG, Rogers MC. Developmental physiology of the respiratory system. In: Rogers MC, Nichols DG, editors. Textbook of pediatric intensive care. Baltimore: Williams & Wilkins; 1996. p. 105.

    Google Scholar 

  25. Merritt TA. Oxygen exposure in the newborn guinea pig-lung lavage cell populations, chemotactic and elastase response: a possible relationship to neonatal bronchopulmonary dysplasia. Pediatr Res. 1982;16:798.

    Article  CAS  PubMed  Google Scholar 

  26. O’Brodovich HM, Haddad GG. The functional basis of respiratory pathology and disease. In: Chernick V, Boat TF, editors. Kendig’s Disorders of the respiratory tract in children. 6th ed. Philadelphia: W.B. Saunders; 1998. p. 41.

    Google Scholar 

  27. Agostoni E. Volume-pressure relationships to the thorax and lung in the newborn. J Appl Physiol. 1959;14:909–13.

    CAS  PubMed  Google Scholar 

  28. Gaultier CL, Boule M, Allaire Y, Clement A, Girard F. Growth of lung volumes during the first three years of life. Bull Eur Physiopathol Respir. 1979;15:1103–16.

    CAS  PubMed  Google Scholar 

  29. Le Souef PN, Endlgand SJ, Bryan AC. Passive respiratory mechanics in newborns and children. Am Rev Respir Dis. 1984;129:552–6.

    Google Scholar 

  30. Mortola JP, Milic-Emili J, Noworaj A, Smith B, Fox G, Weeks S. Muscle pressure and flow during expiration in infants. Am Rev Respir Dis. 1984;129:49–53.

    CAS  PubMed  Google Scholar 

  31. Kosch PC, Hutchison AA, Wozniak JA, Carlo WA, Stark AR. Posterior cricoarytenoid and diaphragm activities during tidal breathing in neonates. J Appl Physiol. 1988;64:1968–78.

    CAS  PubMed  Google Scholar 

  32. Stark AR, Cohlan BA, Waggener TB, Frantz III ID, Kosch PC. Regulation of end-expiratory lung volume during sleep in premature infants. J Appl Physiol. 1987;62:1117–23.

    Article  CAS  PubMed  Google Scholar 

  33. Harding R, Johnson P, McClelland ME. Respiratory function of the larynx in developing sheep and the influence of sleep state. Respir Physiol. 1980;40:165–79.

    Article  CAS  PubMed  Google Scholar 

  34. Mansell A, Bryan C, Levison H. Airway closure in children. J Appl Physiol. 1972;33:711.

    CAS  PubMed  Google Scholar 

  35. Dantzker DR, Brook CJ, Dehart P, et al. Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis. 1993;120:1039–52.

    Google Scholar 

  36. Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance-parts 1 & 2. Crit Care Med. 1992;20:1604–16.

    Article  CAS  PubMed  Google Scholar 

  37. Boros SJ, Matalon SV, Ewald R, et al. The effect of independent variations in inspiratory-expiratory ration and end-expiratory pressure during mechanical ventilation in hyaline membrane disease: the significance of mean airway pressure. J Pediatr. 1977;91:794–8.

    Article  CAS  PubMed  Google Scholar 

  38. Weisman IM, Rinaldo JE, Rogers RM, Sanders MH. Intermittent mandatory ventilation. Am Rev Respir Dis. 1983;127:641–7.

    CAS  PubMed  Google Scholar 

  39. Mansell A, Bryan C, Levison H. Airway closure in children. J Appl Physiol. 1972;33:711–4.

    CAS  PubMed  Google Scholar 

  40. Banner MJ, Jaegar MJ, Kirby RR. Components of the work of breathing and implications for monitoring ventilator-dependent patients. Crit Care Med. 1994;22:515–23.

    Article  CAS  PubMed  Google Scholar 

  41. Halfaer MA, Nichols DG, Rogers MC. Developmental physiology of the respiratory system. In: Rogers MC, Nichols DG, editors. Textbook of pediatric intensive care. 3rd ed. Baltimore: Williams & Wilkins; 1996. p. 106.

    Google Scholar 

  42. Belik J, Keeley FW, Baldwin F, Rabinovitch M. Pulmonary hypertension and vascular remodeling in fetal sheep. Am J Physiol. 1994;266:H2303–9.

    CAS  PubMed  Google Scholar 

  43. Rabinovitch M, Keane JF, Norwood WI, Castaneda AR, Reid L. Vascular structure in lung tissue obtained at biopsy correlated with pulmonary hemodynamic findings after repair of congenital heart defects. Circulation. 1984;69:655–67.

    Article  CAS  PubMed  Google Scholar 

  44. O’Brodovich HM, Haddad GG. The functional basis of respiratory pathology and disease. In: Chernick V, Boat TF, editors. Kendig’s disorders of the respiratory tract in children. 6th ed. Philadelphia: W.B. Saunders; 1998. p. 47.

    Google Scholar 

  45. O’Brodovich HM, Haddad GG. The functional basis of respiratory pathology and disease. In: Chernick V, Boat TF, editors. Kendig’s disorders of the respiratory tract in children. 6th ed. Philadelphia: W.B. Saunders; 1998. p. 49.

    Google Scholar 

  46. Rudolph AM. Congenital diseases of the heart. 3rd ed. West Sussex: Blackwell; 2009. p. 93–5.

    Book  Google Scholar 

  47. Rudolph AM. Congenital diseases of the heart. 3rd ed. West Sussex: Blackwell; 2009. 95, 100.

    Book  Google Scholar 

  48. Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90:1306.

    Article  Google Scholar 

  49. Halfaer MA, Nichols DG, Rogers MC. Developmental physiology of the respiratory system. In: Rogers MC, Nichols DG, editors. Textbook of pediatric intensive care. 3rd ed. Baltimore: Williams & Wilkins; 1996. p. 109.

    Google Scholar 

  50. Menkes HA, Traystman RJ. Collateral ventilation. Am Rev Respir Dis. 1977;116:287.

    CAS  PubMed  Google Scholar 

  51. Weibel ER, Bachofen H. How to stabilize the pulmonary alveoli: surfactants or fibers? News Physiol Sci. 1987;2(2):72–5.

    Google Scholar 

  52. Smith CA, Nelson NM. The physiology of the newborn infant. Springfield: Charles C. Thomas; 1976. p. 206.

    Google Scholar 

  53. Martin L. Ventilation, respiratory monitoring & pulmonary physiology. In: Tobias JD, editor. Pediatric critical care: the essentials. Armonk: Futura Publishing; 1999. p. 60.

    Google Scholar 

  54. West JB. Respiratory physiology – the essentials. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn D. Martin MD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

McFadyen, J.G., Thompson, D.R., Martin, L.D. (2014). Applied Respiratory Physiology. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6356-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6356-5_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6355-8

  • Online ISBN: 978-1-4471-6356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics