Skip to main content

Experimental Model of Aortic Valve Calcification to Induce Osteoblast Differentiation

  • Chapter
  • First Online:
  • 763 Accesses

Abstract

Over the past 25 years, the development of an in vivo model to test for calcific aortic valve disease has been challenging. The understanding of the biology, imaging, and duration of exposure to risk factors, have been the cornerstone for defining the different stages of osteoblast differentiation. The first experimental was high cholesterol-diet rabbit model. The studies published demonstrated apoptosis [1], cell proliferation [2], and atherosclerosis [1, 3–6] along the aortic valve surface. These models all include short time diet experiments to define the early atherosclerotic findings in the valve. The next level of experimentation includes testing the diet for 6 months. This duration of diet provides the time necessary for the valve to mineralize and to calcify.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rajamannan NM, Sangiorgi G, Springett M, Arnold K, Mohacsi T, Spagnoli LG, Edwards WD, Tajik AJ, Schwartz RS. Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis. 2001;10:371–4.

    CAS  PubMed  Google Scholar 

  2. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002;105:2260–5.

    Article  Google Scholar 

  3. Sarphie TG. Interactions of igg and beta-vldl with aortic valve endothelium from hypercholesterolemic rabbits. Atherosclerosis. 1987;68:199–212.

    Article  CAS  PubMed  Google Scholar 

  4. Sarphie TG. A cytochemical study of the surface properties of aortic and mitral valve endothelium from hypercholesterolemic rabbits. Exp Mol Pathol. 1986;44:281–96.

    Article  CAS  PubMed  Google Scholar 

  5. Sarphie TG. Anionic surface properties of aortic and mitral valve endothelium from New Zealand white rabbits. Am J Anat. 1985;174:145–60.

    Article  CAS  PubMed  Google Scholar 

  6. Sarphie TG. Surface responses of aortic valve endothelia from diet-induced, hypercholesterolemic rabbits. Atherosclerosis. 1985;54:283–99.

    Article  CAS  PubMed  Google Scholar 

  7. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML, Osteoporosis-Pseudoglioma Syndrome Collaborative G. Ldl receptor-related protein 5 (lrp5) affects bone accrual and eye development. Cell. 2001;107:513–23.

    Article  CAS  PubMed  Google Scholar 

  8. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML. A mutation in the ldl receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70:11–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kim DH, Inagaki Y, Suzuki T, Ioka RX, Yoshioka SZ, Magoori K, Kang MJ, Cho Y, Nakano AZ, Liu Q, Fujino T, Suzuki H, Sasano H, Yamamoto TT. A new low density lipoprotein receptor related protein, lrp5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein e. J Biochem. 1998;124:1072–6.

    Article  CAS  PubMed  Google Scholar 

  10. Willert K, Nusse R. Beta-catenin: a key mediator of wnt signaling. Curr Opin Genet Dev. 1998;8:95–102.

    Article  CAS  PubMed  Google Scholar 

  11. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor lef-1. Nature. 1996;382:638–42.

    Article  CAS  PubMed  Google Scholar 

  12. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor lef-1. Mech Dev. 1996;59:3–10.

    Article  CAS  PubMed  Google Scholar 

  13. Holmen SL, Salic A, Zylstra CR, Kirschner MW, Williams BO. A novel set of wnt-frizzled fusion proteins identifies receptor components that activate beta-catenin-dependent signaling. J Biol Chem. 2002;277:34727–35.

    Article  CAS  PubMed  Google Scholar 

  14. Caverzasio J. [wnt/lrp5, a new regulation osteoblastic pathway involved in reaching peak bone masses]. Rev Med Suisse Romande. 2004;124:81–2.

    PubMed  Google Scholar 

  15. Kahler RA, Westendorf JJ. Lymphoid enhancer factor-1 and beta-catenin inhibit runx2-dependent transcriptional activation of the osteocalcin promoter. J Biol Chem. 2003;278:11937–44.

    Article  CAS  PubMed  Google Scholar 

  16. Smith E, Frenkel B. Glucocorticoids inhibit the transcriptional activity of lef/tcf in differentiating osteoblasts in a glycogen synthase kinase-3{beta}-dependent and -independent manner. J Biol Chem. 2005;280:2388–94.

    Article  CAS  PubMed  Google Scholar 

  17. Wang HY, Malbon CC. Wnt signaling, ca2+, and cyclic gmp: visualizing frizzled functions. Science. 2003;300:1529–30.

    Article  CAS  PubMed  Google Scholar 

  18. Gregory CA, Perry AS, Reyes E, Conley A, Gunn WG, Prockop DJ. Dkk-1-derived synthetic peptides and lithium chloride for the control and recovery of adult stem cells from bone marrow. J Biol Chem. 2005;280:2309–23.

    Article  CAS  PubMed  Google Scholar 

  19. Yano F, Kugimiya F, Ohba S, Ikeda T, Chikuda H, Ogasawara T, Ogata N, Takato T, Nakamura K, Kawaguchi H, Chung UI. The canonical wnt signaling pathway promotes chondrocyte differentiation in a sox9-dependent manner. Biochem Biophys Res Commun. 2005;333:1300–8.

    Article  CAS  PubMed  Google Scholar 

  20. Rajamannan NM, Subramaniam M, Stock SR, Stone NJ, Springett M, Ignatiev KI, McConnell JP, Singh RJ, Bonow RO, Spelsberg TC. Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolaemic aortic valve. Heart. 2005;91:806–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini M. Rajamannan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Rajamannan, N.M., Cicek, M., Hawse, J.R., Spelsberg, T.C., Subramaniam, M. (2014). Experimental Model of Aortic Valve Calcification to Induce Osteoblast Differentiation. In: Rajamannan, N. (eds) Molecular Biology of Valvular Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6350-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6350-3_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6349-7

  • Online ISBN: 978-1-4471-6350-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics