Skip to main content

Comfort Control Techniques for the Users of a Room

  • Chapter
  • First Online:

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter presents several control strategies developed aimed at obtaining an optimal comfort situation for the users of a building, minimising, at the same time, the energy consumption necessary to achieve this comfort situation. Therefore, this chapter focuses on the development and implementation of some control strategies which satisfy this objective. More specifically, hierarchical, linear model-based predictive control, nonlinear model predictive control and multivariable model predictive control strategies are presented. Furthermore, real results obtained from the application of the developed control strategies inside a characteristic room of the CDdI-CIESOL-ARFRISOL building are included and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice that a combined cost function grouping \({J_k}_1\) and \({J_k}_2\) could also be considered.

References

  • Ahmed O, Mitchel J, Klein S (1996) Application of general regression neural networks (GRNN) in HVAC process identification and control. ASHRAE Trans 102:1147–1156

    Google Scholar 

  • Akyildiz IF, Su W, Cayirci E, Sankarasubramaniam Y (2002) Wireless sensor networks: a survey. Comput Netw 38:393–422

    Article  Google Scholar 

  • Álvarez JD, Redondo JL, Camponogara E, Normey-Rico J, Berenguel M, Ortigosa PM (2013) Optimizing building comfort temperature regulation via model predictive control. Energy Build 57:361–372

    Article  Google Scholar 

  • Åström KJ, Hägglund T (2005) Advanced PID control, ISA, The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC, p 27709

    Google Scholar 

  • Åström KJ, Wittenmark B (1997) Computer-controlled systems. Theory and design, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Atthajariyakul S, Leephakpreeda T (2004) Real-time determination of optimal indoor-air condition for thermal comfort, air quality and efficient energy usage. Energy Build 36:720–733

    Article  Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms, 3rd edn. Wiley, New York

    Google Scholar 

  • Bernard T, Kuntze HB (1999) Multiobjective optimization of building climate control systems using fuzzy-logic. In: European control conference, ECC’99, Karlsruhe, Germany

    Google Scholar 

  • Bordons C, Cueli JR (2004) Predictive controller with estimation of measurable disturbances. Application to an olive oil mill. J Process Control 14(3):305–315

    Article  Google Scholar 

  • Braun JE (2007) Intelligent building systems—past, present and future. In: Proceedings of the 2007 American control conference, New York, USA, pp 4374–4381

    Google Scholar 

  • Calvino F, Gennusa ML, Morale M, Rizzo G, Scaccianoce G (2010) Comparing different control strategies for indoor thermal comfort aimed at the evaluation of the energy cost of quality of buildings. Appl Therm Eng 30:2386–2395

    Article  Google Scholar 

  • Camacho EF, Bordons C (2004) Model predictive control. Springer, London

    MATH  Google Scholar 

  • Camacho EF, Berenguel M, Rubio FR, Martínez D (2012) Control of solar energy systems. Springer, London

    Google Scholar 

  • Castilla M, Álvarez JD, Berenguel M, Rodríguez F, Guzmán JL, Pérez M (2011) A comparison of thermal comfort predictive control strategies. Energy Build 43:2737–2746

    Article  Google Scholar 

  • Castilla M, Álvarez JD, Normey-Rico JE, Rodríguez F (2014) Thermal comfort control using a non-linear MPC strategy: a real case of study in a bioclimatic building. J Process Control 24:703–713

    Google Scholar 

  • Ciabattoni L, Freddi A, Ippoliti G (2009) A smart lighting system for industrial and domestic use. In: IEEE International conference on mechatronics, ICM’13, Vicenza, Italy

    Google Scholar 

  • Clarke DW, Mohtadi C, Tuffs PS (1987a) Generalized predictive control–part I. The basic algorithm. Automatica 23(2):137–148

    Article  MATH  Google Scholar 

  • Clarke DW, Mohtadi C, Tuffs PS (1987b) Generalized predictive control—part II. Extensions and interpretations. Automatica 23(2):149–160

    Article  MATH  Google Scholar 

  • Congradac V, Kulic F (2009) HVAC system optimization with CO\(_2\) concentration control using genetic algorithms. Energy Build 41:571–577

    Article  Google Scholar 

  • Congradac VD, Milosavljevic BB, Velickovic JM, Prebiracevic BV (2012) Control of the lighting system using a genetic algorithm. Therm Sci 16:237–250

    Article  Google Scholar 

  • Cutler C, Ramaker B (1979) Dynamic matrix control—a computer control algorithm. In: AIChE national meeting, Houston, USA

    Google Scholar 

  • Cziker A, Chindris M, Miron A (2007) Implementation of fuzzy logic in daylighting control. In: 11th International conference on intelligent engineering systems, Budapest, Hungary

    Google Scholar 

  • Donaisky E, Oliveira G, Freire Z, Mendes N (2007) PMV-based predictive algorithms for controlling thermal comfort in building plants. In: Proceedings of the 16th IEEE international conference on control applications, Singapore, pp 182–187

    Google Scholar 

  • Dounis AI, Caraiscos C (2009) Advanced control systems engineering for energy and comfort management in a building environment—a review. Renew Sustain Energy Rev 13:1246–1261

    Article  Google Scholar 

  • Dounis AI, Santamouris MJ, Lefas CC (1993) Building visual comfort control with fuzzy reasoning. Energy Convers Manag 34:17–28

    Article  Google Scholar 

  • Dounis AI, Tiropanis P, Argiriou A, Diamantis A (2011) Intelligent control system for reconciliation of the energy savings with comfort in buildings using soft computing techniques. Energy Build 43:66–74

    Article  Google Scholar 

  • Dumur D, Boucher P, Murphy KM, Déqué F (1997) Comfort control in residential housing using predictive controllers. In: Proceedings of the 1997 IEEE international conference on control applications, Hartford, Connecticut, USA, pp 265–270

    Google Scholar 

  • Erickson VL, Lin Y, Kamthe A, Brahme R, Surana A, Cerpa AE, Sohn M, Narayanan S (2009) Energy efficient building environment. In: 1st ACM workshop on embedded sensing systems for energy-efficiency in buildings, Berkeley, CA, USA

    Google Scholar 

  • Federspiel CC, Asada H (1994) User—adaptable comfort control for HVAC systems. J Dyn Syst Measur Control 116(3):474–486

    Article  MATH  Google Scholar 

  • Ferreira PM, Ruano AE, Silva S, Conceição EZE (2012) Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build 55:238–251

    Article  Google Scholar 

  • Findeisen W, Bailey FN, Brdys M, Malinowski K, Tatjewski P, Wozniak A (1980) Control and coordination in hierarchical systems. Wiley, Chichester-New York

    MATH  Google Scholar 

  • Flóres J (1985) Temperature prediction models and their application to the control of heating systems. PhD thesis, Control System Centre, UMIST, UK

    Google Scholar 

  • Flóres J, Barney GC (1987a) Adaptive control of central heating systems. Part 1: optimum start time control. Appl Math Modell 11:89–95

    Article  Google Scholar 

  • Flóres J, Barney GC (1987b) Adaptive control of central heating systems. Part 2: occupance time control. Appl Math Modell 11:96–103

    Article  Google Scholar 

  • Freire RZ, Oliveira GHC, Mendes N (2006) Thermal comfort based predictive controllers for building heating systems. In: IFAC workshop on energy saving control in plants and buildings, Bansko, Bulgaria

    Google Scholar 

  • Freire RZ, Oliveira GHC, Mendes N (2008) Predictive controllers for thermal comfort optimization and energy savings. Energy Build 40:1353–1365

    Article  Google Scholar 

  • Georgiu A, Georgakis C, Luyben W (1988) Nonlinear dynamic matrix control for high-purity distillation columns. AIChE J 34(8):1287–1298

    Article  Google Scholar 

  • Goyal S, Herbert AI, Barooach P (2012) Zone-level control algorithms based on occupancy information for energy efficient buildings. In: American control conference (ACC12), Montreal, Canada

    Google Scholar 

  • Gu X, Li H, Zhao L, Wang H (2008) Adaptive PID control of indoor air quality for an air-conditioned room. In: International conference on intelligent computation technology and automation (ICICTA), vol 1. Changsha, Hunan, China, pp 289–293

    Google Scholar 

  • Guillemin A, Morel N (2001) An innovative lighting controller integrated in a self-adaptive building control system. Energy Build 33:477–487

    Article  Google Scholar 

  • Guo W, Zhou M (2009) Technologies toward thermal comfort-based and energy-efficient HVAC systems: A review. In: IEEE conference on systems, man, and cybernetics, San Antonio, TX, USA

    Google Scholar 

  • Guzmán JL (2006) Interactive control system design. PhD thesis, University of Almería, Spain

    Google Scholar 

  • Guzmán JL, Berenguel M, Dormido S (2005) Interactive teaching of constrained generalized predictive control. IEEE Control Syst Mag 25(2):52–66

    Article  Google Scholar 

  • Gwerder M, Gyalistras D, Oldewurtel F, Lehmann B, Wirth K, Stauch V, Tödtli J (2010) Potential assessment of rule-based control for integrated room automation. In: 10th REHVA world congress, sustainable energy use in buildings—CLIMA2010, Antalya, Turkey

    Google Scholar 

  • Gyalistras D, Gwerder M, Oldewurtel F, Jones CN, Morari M, Lehmann B, Wirth K, Stauch V (2010) Analysis of energy savings potentials for integrated room automation. In: 10th REHVA world congress, sustainable energy use in buildings—CLIMA2010, Antalya, Turkey

    Google Scholar 

  • Henze GP, Hindman RE (2002) Control of air-cooled chiller condenser fans using clustering neural netwoks. ASHRAE Trans 108:232–244

    Google Scholar 

  • Higham DJ, Higham NJ (2005) MATLAB guide, 2nd edn. Cambridge University Press, Philadelphia

    Google Scholar 

  • Huang Y, Li N (2006) Indoor thermal comfort control research based on adaptive fuzzy strategy. In: IMACS multiconference on computational engineering in systems applications, vol 2. pp 1969–1972

    Google Scholar 

  • Kalogirou SA, Bojic M (2000) Artificial Neural Networks for the prediction of the energy consumption of a passive solar building. Energy 25:479–491

    Article  Google Scholar 

  • Kang DH, Mo PH, Choi DH, Song SY, Yeo MS (2010) Effect of MRT variation on the energy consumption in a PMV-controlled office. Build Environ 45:1914–1922

    Article  Google Scholar 

  • Kelman A, Ma Y, Borrelli F (2013) Analysis of local optima in predictive control for energy efficient buildings. J Build Perform Simul 6(3):236–255

    Article  Google Scholar 

  • Kolokotsa D, Pouliezos A, Stavrakakis G, Lazos C (2009) Predictive control techniques for energy and indoor environmental quality management in buildings. Build Environ 44:1850–1863

    Article  Google Scholar 

  • Kusiak A, Mingyang L (2009) Optimal decision making in ventilation control. Energy 34:1835–1845

    Article  Google Scholar 

  • Lee H, Choi JS, Elmasri R (2008) A conflict resolution architecture for the comfort of occupants in intelligent office. In: 4th IET international conference on intelligent environments, Seattle, USA

    Google Scholar 

  • Liang J, Du R (2008) Design of intelligent comfort control system with human learning and minimum power control strategies. Energy Convers Manag 49:517–528

    Article  Google Scholar 

  • Liang J, Ruxu D (2005) Thermal comfort control based on neural network for HVAC application. In: Proceedings of the 2005 IEEE conference on control applications, Toronto, Canada, pp 819–824

    Google Scholar 

  • Liu W, Lian Z, Zhao B (2007) A neural network evaluation model for individual thermal comfort. Energy Build 39:1115–1122

    Article  Google Scholar 

  • Ma Y, Borrelli F (2012) Fast stochastic predictive control for building temperature regulation. In: American control conference (ACC12), Montreal, Canada, pp 3075–3080

    Google Scholar 

  • Ma Y, Borrelli F, Hencey B, Packard A, Bortoff S (2009) Model predictive control of thermal energy storage in building cooling systems. In: 48th IEEE conference on decision and control, Shanghai, China, pp 392–397

    Google Scholar 

  • Ma Y, Anderson G, Borrelli F (2011) A distributed predictive control approach to building temperature regulation. In: American control conference (ACC11), California, San Francisco, USA, pp 2089–2094

    Google Scholar 

  • Ma Y, Borrelli F, Hencey B, Coffey B, Bengea S, Haves P (2012a) Model predictive control for the operation of building cooling systems. IEEE Trans Control Syst Technol 20(3):796–803

    Article  Google Scholar 

  • Ma Y, Kelman A, Daly A, Borrelli F (2012b) Predictive control for energy efficient buildings with thermal storage: modeling, stimulation, and experiments. IEEE Control Syst Mag 32(1):44–64

    Google Scholar 

  • Magnier L, Haghighat F (2010) Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm and artificial neural networks. Build Environ 45:739–746

    Article  Google Scholar 

  • Matsko T (1985) Internal model control for chemical recovery. Chem Eng Prog 81(12):46–51

    Google Scholar 

  • Menchinelli P, Bemporad A (2008) Hybrid model predictive control of a solar air conditioning plant. Eur J Control 6:501–515

    Article  Google Scholar 

  • Moroşan PD, Bourdais R, Dumur D, Buisson J (2010) Building temperature regulation using a distributed model predictive control. Energy Build 42:1445–1452

    Article  Google Scholar 

  • MPC Lab-UC-Berkeley (2013) http://www.mpc.berkeley.edu/research/predictive-networked-building-control-1. Accessed 30 July 2013

  • Nassif N, Kajl S, Sabouring R (2003) Two-objective online optimization of supervisory control strategy. In: Proceedings of the 8th building simulation conference, Eindhoven, Netherlands, pp 927–943

    Google Scholar 

  • Nicol JF, Humphreys MA (2002) Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build 34:563–572

    Article  Google Scholar 

  • Ogunnaike B, Harmon Ray W (1994) Process dynamics, modeling and control. Oxford University Press, New York

    Google Scholar 

  • Oldewurtel F, Jones CN, Morari M (2008) A tractable approximation of chance constrained stochastic MPC based on affine disturbance feedback. In: Proceedings of the 47th IEEE conference on decision and control, Cancún, Mexico

    Google Scholar 

  • Oldewurtel F, Gyalistras D, Gwerder M, Jones CN, Parisio A, Stauch V, Lehmann B, Morari M (2010a) Increasing energy efficiency in buildings climate control using weather forecasts and model predictive control. In: 10th REHVA world congress, sustainable energy Use in buildings—CLIMA2010, Antalya, Turkey

    Google Scholar 

  • Oldewurtel F, Parisio A, Jones CN, Morari M, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Wirth K (2010b) Energy efficient buildings climate control using stochastic model predictive control and weather predictions. In: American control conference (ACC10), Baltimore, Maryland, USA

    Google Scholar 

  • Oliveira GHC, Coelho LS, Mendes H, Araújo HX (2003) Using fuzzy logic in heating control systems. In: 6th ASME-JSME thermal engineering joint conference, Hawaii, USA

    Google Scholar 

  • OptiControl (2013) http://www.opticontrol.ethz.ch/. Accessed 29 July 2013

  • Pasamontes M, Álvarez JD, Guzmán JL, Berenguel M (2009) Hybrid modeling of a solar cooling system. In: IFAC international conference on analysis and design of hybrid system, ADHS09, Zaragoza, Spain

    Google Scholar 

  • Plucenio A (2010) Desenvolvimento de técnicas de controle não linear para elevação de fluidos multifásicos. PhD thesis, University of Florianópolis, Brazil

    Google Scholar 

  • Plucenio A, Pagano DJ, Bruciapaglia AH, Normey-Rico JE (2007) A practical approach to predictive control for nonlinear processes. In: 7th IFAC symposium on nonlinear control systems, NOLCOS, Pretoria, South Africa

    Google Scholar 

  • Prett D, Gillette R (1979) Optimization and constrained multivariable control of a catalytic cracking unit. In: AIChE national meeting, Houston, USA

    Google Scholar 

  • Privara S, Siroky J, Ferkl L, Cigler J (2011) Model predictive control of a building heating system: the first experience. Energy Build 43:564–572

    Article  Google Scholar 

  • Nuñez Reyes A, Normey-Rico JE, Bordons C, Camacho EF (2005) A Smith predictive based MPC in a solar air conditioning plant. J Process Control 15(1):1–10

    Article  Google Scholar 

  • Richalet J, Rault A, Testud J, Papon J (1976) Algorithmic control of industrial processes. In: 4th IFAC symposium on identification and system parameter estimation, Tbilisi, USSR

    Google Scholar 

  • Richalet J, Rault A, Testud J, Papon J (1978) Model predictive heuristic control: applications to industrial processes. Automatica 14(2):413–428

    Article  Google Scholar 

  • Ricker N, Subramanian T, Sim T (1989) Case studies of model predictive control in pulp and paper production. In: IFAC workshop on model based process control, Pergamon Press, Oxford

    Google Scholar 

  • Rivera DE, Morari M, Skogestad S (1986) Internal model control. 4. PID controller design. Ind Eng Chem Process Des Dev 25:252–265

    Article  Google Scholar 

  • Rodríguez M, De Prada C, Capraro F, Cristea S (2008) Logic embedded NMPC of a solar air conditioning plant. Eur J Control 6:484–500

    Article  Google Scholar 

  • Ruano AE, Ferreira PM, Mendes H (2010) MOGA design of temperature and relative humidity models for predictive thermal comfort. In: IFAC conference on control methodologies and technology for energy efficiency, Villamoura, Portugal

    Google Scholar 

  • Salsbury TI (2002) A new pulse modulation adaptive controller (PCMA) applied to HVAC systems. Control Eng Pract 10:1357–1370

    Article  Google Scholar 

  • Scherer HF, Pasamontes M, Guzmán JL, Álvarez JD, Camponogara E, Normey-Rico JE (2014) Efficient building energy management using distributed model predictive control. J Process Control 24:740–749

    Google Scholar 

  • Seborg DE (1999) A perspective on advanced strategies for process control (revisited). In: Frank PM (ed) Advances in control highlights of ECC99, Springer, Karlsruhe, Germany

    Google Scholar 

  • Si W, Ogai H, Li T, Hirai K (2013) A novel energy saving system for office lighting control by using RBFNN and PSO. In: IEEE TENCON spring conference, Sydney, Australia

    Google Scholar 

  • Siroky J, Privara S, Ferkl L (2010) Model predictive control of building heating systems. In: 10th REHVA world congress, sustainable energy use in buildings—CLIMA2010, Antalya, Turkey

    Google Scholar 

  • Sonntag C, Ding H, Engell S (2008) Supervisory control of a solar air conditioning plant with hybrid dynamics. Eur J Control 6:451–463

    Article  Google Scholar 

  • Sturzenegger D, Oldewurtel F, Morari M (2013) Importance of long-term occupancy information and validation with real occupancy data. Clima—RHEVA world congress, sustainable energy use in buildings, Czech Republic, Prague, pp 1245–1257

    Google Scholar 

  • TRNSYS (2013) http://www.trnsys.com/. Accessed 4 Aug 2013

  • Trobec M, Zupancic B, Krainer A (2005) Fuzzy control for the illumination and temperature comfort in a test chamber. Buildi Environ 40(12):1626–1637

    Article  Google Scholar 

  • Tse WL, Chan WL (2007) Real-time measurement of thermal comfort by using an open networking technology. Measurement 40(6):654–664

    Article  Google Scholar 

  • Tse WL, Chan WL (2008) A distributed sensor network for measurement of human thermal comfort feelings. Sens Actuators A Phys 144(2):394–402

    Article  Google Scholar 

  • Wang S, Xu Z, Li H, Shi W (2004) Investigation on intelligent building standard communication protocols and application of IT technologies. Autom Constr 13:607–619

    Article  Google Scholar 

  • Wang Y, Shao Y, Kargel C (2012) Demand controlled ventilation strategies for high indoor air quality and low heating energy demand. In: IEEE international instrumentation and measurement technology conference, I2MTC, Graz, Austria

    Google Scholar 

  • Wang Z, Wang L (2012) Indoor air quality control for energy-efficient buildings using CO\(_2\) predictive model. In: IEEE international conference on industrial informatics, INDIN, Beijing, China

    Google Scholar 

  • Wang Z, Wang L (2013) Intelligent control of ventilation system for energy-efficient buildings with CO\(_2\) predictive model. IEEE Trans Smart Grid 4:686–693

    Article  Google Scholar 

  • Yifei C, Huai L, Xueliang C (2009) Venetian blind control system based on fuzzy neural network for indoor daylighting. In: 2nd International conference on computer and electrical engineering, ICCEE’09, Dubai, United Arab Emirates

    Google Scholar 

  • Yu Z, Dexter A (2007) Hierarchical fuzzy rule-based control of renewable energy building systems. In: Renewables in a changing climate: innovation in the built environment—CISBAT 2007, Lausanne, Switzerland

    Google Scholar 

  • Zambrano D, García-Gabin W (2008) Hierarchical control of a hybrid solar air conditioning plant. Eur J Control 6:464–483

    Article  Google Scholar 

  • Zanoli SM, Barchiesi D (2012) Thermal and lighting control system with energy saving and users comfort features. In: 20th Mediterranean conference on control and automation, MED’12, Barcelona, Spain

    Google Scholar 

  • Zhang X, Schildbach G, Sturzenegger D, Morari M (2013) Scenario-based MPC for energy-efficient building climate control under weather and occupancy uncertainty. In: European Control Conference, ECC’13, Zürich, Switzerland, pp 1029–1034

    Google Scholar 

  • Zhou H, Rao M, Chuang KT (1994) Intelligent control system for indoor air quality control. Environ Int 20:457–467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Mar Castilla .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Castilla, M.d.M., Álvarez, J.D., Rodríguez Diaz, F., Berenguel, M. (2014). Comfort Control Techniques for the Users of a Room. In: Comfort Control in Buildings. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-6347-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6347-3_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6346-6

  • Online ISBN: 978-1-4471-6347-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics