Advertisement

PDF Reconstruction Methods

  • J. S. ShrimptonEmail author
  • S. Haeri
  • Stephen J. Scott
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

In this chapter, the closure problem for non-integer moments as discussed in Sect.  5.3 will be considered.

Keywords

Probability Density Function Fractional Derivative Maximum Entropy Method Laguerre Polynomial Population Balance Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rigopoulos S (2010) Population balance modelling of polydispersed particles in reactive flows. Prog Energy Combust Sci 36:412–443CrossRefGoogle Scholar
  2. 2.
    Frenklach M, Harris SJ (1987) Aerosol dynamics modeling using the method of moments. J Colloid Interface Sci 118:252–261CrossRefGoogle Scholar
  3. 3.
    Diemer RB, Olson JH (2002c) A moment methodology for coagulation and breakage problems: part 3-generalized daughter distribution functions. Chem Eng Sci 57:4187–4198CrossRefGoogle Scholar
  4. 4.
    Diemer RB, Olson JH (2002a) A moment methodology for coagulation and breakage problems: part 1-analytical solution of the steady-state population balance. Chem Eng Sci 57:2193–2209CrossRefGoogle Scholar
  5. 5.
    Diemer RB, Olson JH (2002b) A moment methodology for coagulation and breakage problems: part 2 moment models and distribution reconstruction. Chem Eng Sci 57:2211–2228CrossRefGoogle Scholar
  6. 6.
    Diemer R, Olson J (2006) Bivariate moment methods for simultaneous coagulation, coalescence and breakup. J Aerosol Sci 37:363–385CrossRefGoogle Scholar
  7. 7.
    Beck J, Watkins A (2002) On the development of spray submodels based on droplet size moments. J Comput Phys 182:586–621CrossRefzbMATHGoogle Scholar
  8. 8.
    Beck JC, Watkins AP (2003c) The droplet number moments approach to spray modelling: the development of heat and mass transfer sub-models. Int J Heat Fluid Flow 24:242–259CrossRefGoogle Scholar
  9. 9.
    John V, Angelov I, Oncul AA, Thevenin D (2007) Techniques for the reconstruction of a distribution from a finite number of its moments. Chem Eng Sci 62:2890–2904CrossRefGoogle Scholar
  10. 10.
    Tagliani A (1999) Hausdorff moment problem and maximum entropy: a unified approach. Appl Math Comput 105:291–305CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Inverardi P, Pontuale G, Petri A, Tagliani A (2003) Hausdorff moment problem via fractional moments. Appl Math Comput 144:61–74CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Inverardi P, Pontuale G, Petri A, Tagliani A (2005) Stieltjes moment problem via fractional moments. Appl Math Comput 166:664–677CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Pintarellia M, Vericat F (2003) Generalized Hausdorff inverse moment problem. Phys A 324:568–588CrossRefMathSciNetGoogle Scholar
  14. 14.
    Talenti G (1987) Recovering a function from a finite number of moments. Inverse Prob 3: 501–517Google Scholar
  15. 15.
    Volpe EV, Baganoff D (2003) Maximum entropy PDFs and the moment problem under near-Gaussian conditions. Prob Eng Mech 18:17–29CrossRefGoogle Scholar
  16. 16.
    Koopman BO (1969) Relaxed motion in irreversible molecular statistics. Stoch Process Chem Phys 15:37–63Google Scholar
  17. 17.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–623CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Paris J, Vencovska A (1997) In defense of the maximum entropy inference process. Int J Approx Reasoning 17:77–103CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Archambault MR, Edwards CF, McCormack RW (2003d) Computation of spray dynamics by moment transport equations I: theory and development. Atomization Sprays 13:63–87Google Scholar
  20. 20.
    Blinnikov S, Moessner R (1998) Expansions for nearly Gaussian distributions. Astron Astrophys Suppl Ser 130:193–205CrossRefGoogle Scholar
  21. 21.
    Abramowitz M, Stegun I (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New YorkGoogle Scholar
  22. 22.
    Majumdar AK, Luna C, Idell P (2007) Reconstruction of probability density function of intensity fluctuations relevant to free-space laser communications through atmospheric turbulence. In: Proceedings of SPIEGoogle Scholar
  23. 23.
    Kendall M, Stuart A, Ord J (1991) Kendall’s advanced theory of statistics: distribution theory, vol 1. Wiley, New YorkGoogle Scholar
  24. 24.
    Gaztanaga E, Fosalba P, Elizalde E (2000) Gravitational evolution of the large-scale probability density. Astrophys J 539:522–531CrossRefGoogle Scholar
  25. 25.
    Haeri S, Shrimpton J (2012) Closure of non-integer moments arising in multiphase flow phenomena. Chem Eng Sci 75(0):424–434. http://dx.doi.org/10.1016/j.ces.2012.03.052
  26. 26.
    Mood A, Graybill FA, Boes D (1974) Introduction to the theory of statistics. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Scott SJ (2006) A PDF based method formodelling polysized particle laden turbulent flows without size class discretisation. Ph.D. thesis, Imperial College, LondonGoogle Scholar
  28. 28.
    Jaynes E (1957a) Information theory and statistical mechanics. Phys Rev 106:620–630CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Sellens RW, Brzustowski TA (1985) A prediction of the drop size distribution in a spray from first principles. Atomisation Spray Technol 1:89–102Google Scholar
  30. 30.
    Sellens RW (1989) Prediction of the drop size and velocity distribution in a spray, based on the maximum entropy formalism. Part Part Syst Charact 6:17–27CrossRefGoogle Scholar
  31. 31.
    Ahmadi M, Sellens RW (1993) A simplified maximum-entropy-based drop size distribution. Atomization Sprays 3:291–310Google Scholar
  32. 32.
    Boyaval S, Dumouchel C (2001) Investigation on the drop size distribution of sprays produced by a high-pressure swirl injector. Measurements and application of the maximum entropy formalism. Part Part Syst Charact 18:33–49CrossRefGoogle Scholar
  33. 33.
    Dumouchel C, Boyaval S (1999) Use of the maximum entropy formalism to determine drop size distribution characteristics. Part Part Syst Charact 16:177–184CrossRefGoogle Scholar
  34. 34.
    Archambault MR, Edwards CF, McCormack RW (2003a) Computation of spray dynamics by moment transport equations II: application to quasi-one dimensional spray. Atomization Sprays 13:89–115CrossRefGoogle Scholar
  35. 35.
    Zwillinger D (2003) CRC standard mathematical tables and formulae. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Kreyszig E (1999) Advanced engineering mathematics. Wiley, New YorkGoogle Scholar
  37. 37.
    Alhassid Y, Agmon N, Levine RD (1978) An upper bound for the entropy and its applications to the maximal entropy problem. Chem Phys Lett 53:22–26CrossRefMathSciNetGoogle Scholar
  38. 38.
    Alhassid Y, Agmon N, Levine RD (1979) An algorithm for finding the distribution of maximum entropy. J Comput Phys 30:250–258CrossRefzbMATHGoogle Scholar
  39. 39.
    Mustapha H, Dimitrakopoulos R (2010) Generalized Laguerre expansions of multivariate probability densities with moments. Comput Math Appl 60:2178–2189CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Cody W (1976) An overview of software development for special functions. Lect Notes Math 506:38–48CrossRefGoogle Scholar
  41. 41.
    Lebedev N (1972) Special functions and their applications. Dover Publications, New YorkGoogle Scholar
  42. 42.
    Ross B (1977) Fractional calculus: an historical apologia for the development of a calculus using differentiation and antidifferentiation of noninteger orders. Math Mag 50:115–122Google Scholar
  43. 43.
    Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoGoogle Scholar
  44. 44.
    Hilfer R (2000) Fractional calculus in physics. World Scientific, SingaporeGoogle Scholar
  45. 45.
    Schiavone S, Lamb W (1990) A fractional power approach to fractional calculus. J Math Anal Appl 149:337–401CrossRefMathSciNetGoogle Scholar
  46. 46.
    Cottone G, Di Paola M (2009) On the use of fractional calculus for the probabilistic characterization of random variables. Probab Eng Mech 24:321–334CrossRefGoogle Scholar
  47. 47.
    Caputo M (1967) Linear models of dissipation whose q is almost frequency independent-II. Geophys J R Astr Soc 13:529–539CrossRefGoogle Scholar
  48. 48.
    Cressie N, Borkent M (1986) The moment generating function has its moments. J Stat Plan Infer 13:337–344CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Deng W (2007) Short memory principle and a predictor-corrector approach for fractional differential equations. J Comput Appl Math 206:174–188CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Gzyl H, Tagliani A (2010) Hausdorff moment problem and fractional moments. Appl Math Comput 216:3319–3328CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Alexiadisa A, Vanni M, Gardin P (2004) Extension of the method of moments for population balances involving fractional moments and application to a typical agglomeration problem. J Colloid Interface Sci 276:106–112CrossRefGoogle Scholar
  52. 52.
    Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17:704–719Google Scholar
  53. 53.
    Behboodian J (1970) On the modes of a mixture of two normal distributions on the modes of a mixture of two normal distributions. Technometrics 12:131–139Google Scholar
  54. 54.
    Schilling M, Watkins A, Watkins W (2002) Is human height bimodal? Am Stat 56:223–229CrossRefMathSciNetGoogle Scholar
  55. 55.
    Shampine L (2008) Vectorized adaptive quadrature in Matlab. J Comput Appl Math 211: 131–140Google Scholar
  56. 56.
    Majumdar AK, Gamo H (1982) Statistical measurements of irradiance fluctuations of a multipass laser beam propagated through laboratory-simulated atmospheric turbulence. Appl Opt 21:2229–2235CrossRefGoogle Scholar
  57. 57.
    Majumdar A (1984) Uniqueness of statistics derived from moments of irradiance fluctuations in atmospheric optical propagation. Opt Commun 50:1–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  2. 2.University of SouthamptonSouthamptonUK
  3. 3.YorkUK

Personalised recommendations