Skip to main content

Eulerian–Eulerian Field Equations

  • Chapter
  • First Online:
  • 376 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, different methods for writing EE field equations are discussed. RANS- and PDF-type methods are introduced, and the advantages of PDF methods are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The author believes that the phase indicator function is not strictly applicable for averaging the instantaneous equations that already represent a continuum.

  2. 2.

    The general notation adopted from this point onward is that Eulerian variablesEulerian variables are denoted by lower-case characters, and Lagrangian variablesLagrangian variables are denoted by upper-case characters.*****

  3. 3.

    A derivation of Eq. 3.44 can be found in Subramaniam [100]

References

  1. Harlow FH, Amsden AA (1975) Numerical calculation of multiphase fluid flow. J Comp Phys 17:19–52

    Article  MATH  Google Scholar 

  2. Jackson R (1997) Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem Eng Sci 52:2457–2469

    Article  Google Scholar 

  3. Zhang DZ, Prosperetti A (1997) Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Int J Multiphase Flow 23:425–453

    Article  MATH  Google Scholar 

  4. Zhang DZ, Prosperetti A (1994) Averaged equations for inviscid disperse two-phase flow. J Fluid Mech 267:185–219

    Article  MATH  MathSciNet  Google Scholar 

  5. Crowe CT, Troutt TR, Chung JN (1996) Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech 28:11–43

    Article  MathSciNet  Google Scholar 

  6. Crowe CT (1982) Review: numerical models for dilute gas-particle flows. J Fluids Eng 104:297–303

    Article  Google Scholar 

  7. Hinze JO (1959) Turbulence. McGraw-Hill, New York

    Google Scholar 

  8. Druzhinin OA, Elghobashi S (1997) Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation. Phys Fluids 10:685–697

    Article  Google Scholar 

  9. Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds. Ind Eng Chem Fundam 6:527–539

    Article  Google Scholar 

  10. Vernier P, Delhaye JM (1968) General two-phase flow equations applied to the thermodynamics of boiling water nuclear reactors. Energ Primaire 4:5–46

    Google Scholar 

  11. Drew DA (1971) Average field equations for two-phase media. Stud Appl Math 50:133–166

    MATH  Google Scholar 

  12. Whitaker S (1973) The transport equations for multiphase systems. Chem Eng Sci 28:139–147

    Article  Google Scholar 

  13. Ishii M (1975) Thermo-fluid dynamic theory of two-phase flow. Eyrolles, Paris

    MATH  Google Scholar 

  14. Nigmatulin RI (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int J Multiphase Flow 5:353–385

    Google Scholar 

  15. Batchelor GK (1974) Transport properties of two-phase materials with random structure. Ann Rev Fluid Mech 6:227–255

    Article  Google Scholar 

  16. Buyevich YA, Shchelchkova IN (1978) Flow in dense suspensions. Prog Aerosp Sci 18: 121–150

    Google Scholar 

  17. Drew DA (1983) Mathematical modelling of two-phase flow. Ann Rev Fluid Mech 15: 261–291

    Google Scholar 

  18. Shih TH, Lumley JL (1986) Second-order modelling of particle dispersion in a turbulent flow. J Fluid Mech 163:349–363

    Article  MATH  MathSciNet  Google Scholar 

  19. Mashayek F, Pandya RVR (2003) Analytical description of particle/droplet-laden turbulent flows. Prog Energy Comb Sci 29:329–378

    Article  Google Scholar 

  20. Favre A (1976) Turbulence en Mécanique des Fluides, CNRS, chap Équations fondamentales des fluids à masse volumique variable en écoulements turbulents, pp 24–78

    Google Scholar 

  21. Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Trans 15:301–314

    Article  Google Scholar 

  22. Pourahmadi F, Humphrey JAC (1983) Modelling solid-fluid turbulent flows with application to prdicting erosive wear. PhysicoChemical Hydrodyn 4:191–219

    Google Scholar 

  23. Elghobashi SE, Abou-Arab T (1983) A two-equation turbulence model for two-phase flows. Phys Fluids 26:931–938

    Article  MATH  Google Scholar 

  24. Elghobashi SE, Abou-Arab T, Rizk M, Mostafa A (1984) Prediction of the particle-laden jet with a two equation turbulence model. Int J Multiph Flow 10:697–710

    Article  Google Scholar 

  25. Mostafa AA, Elghobashi SE (1985) A two-equation turbulence model for jet flows laden with vaporizing droplets. Int J Multiph Flow 11:515–533

    Article  Google Scholar 

  26. Tambour Y (1980) A sectional model for evaporation and combustion of sprays of liquid fuels. Israel J Tech 18:47–56

    MATH  Google Scholar 

  27. Rizk MA, Elghobashi SE (1989) Two-equation turbulence model for dispersed dilute confined two-phase flows. Int J Multiph Flow 15:119–133

    Article  Google Scholar 

  28. Chen CP, Wood PE (1986) Turbulence closure modelling of the dilute gas-particle axisymmetric jet. AICh E J 32(1):163–166

    Article  Google Scholar 

  29. Taulbee DB, Mashayek F, Barre C (1999) Simulation and Reynolds stress modelling of particle-laden turbulent shear flows. Int J Heat Fluid Flow 20:368–373

    Article  Google Scholar 

  30. Mashayek F, Taulbee DB (2002) A four equation model for prediction of gas-solid turbulent flows. Num Heat Trans B 41:95–116

    Article  Google Scholar 

  31. Issa RI, Oliveira PJ (1993) Engineering turbulence modelling and experiments 2, Elsevier Science Publishers B. V., chap Modelling of turbulent dispersion in two phase flow jets, pp 947–957

    Google Scholar 

  32. Picart A, Berlemont A, Gouesbet G (1986) Modelling and predicting turbulence fields and the dispersion of discrete particles transported by turbulent flows. Int J Multiph Flow 12(2):237–261

    Article  MATH  Google Scholar 

  33. Gouesbet G, Berlemont A, Picart A (1984) Dispersion of discrete particles by continuous turbulent motion. extensive discussion of tchen’s theory, using a two—parameter family of lagrangian correlation functions. Phys Fluids 27:827–837

    Article  MATH  Google Scholar 

  34. Tchen CM (1947) Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, Delft University, The Hague

    Google Scholar 

  35. Abou-Arab TW, Roco MC (1990) Solid phase contribution in the two-phase turbulence kinetic energy equation. J Fluids Eng 112:351–61

    Article  Google Scholar 

  36. Lain S, Aliod R (2000) Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: discussion and comparison with experiments. Int J Heat Fluid Flow 21:374–380

    Article  Google Scholar 

  37. Aliod R, Dopazo C (1990) A statistically conditioned averaging formalism for deriving two-phase flow equations. Part Part Syst Charact 7:191–202

    Article  Google Scholar 

  38. Reeks MW (1993) On the constitutive relations for dispersed particles in nonuniform flows I: dispersion in a simple shear flow. Phys Fluids A 5:750–761

    Article  MATH  Google Scholar 

  39. Zhou LX, Gu HX (2003) A nonlinear \(k-\varepsilon -k_{p}\) two-phase turbulence model. J Fluids Eng 125:191–194

    Article  Google Scholar 

  40. Zhou LX (2005) Development of multiphase and reacting turbulence models. Num Heat Trans B 47:179–197

    Article  Google Scholar 

  41. Barré C, an DB, Taulbee FM (2001) Statistics in particle-laden plane strain turbulence by direct numerical simulation. Int J Multiph Flow 278:347–378

    Google Scholar 

  42. Viollet PL, Simonin O, Olive J, Minier JP (1992) Computational methods in applied sciences. Elsevier Science Publishers B, V., chap Modelling turbulent two-phase flows in industrial equipments

    Google Scholar 

  43. Mashayek F (1998) Droplet-turbulence interactions in low-Mach-number homogeneous shear two-phase flows. J Fluid Mech 367:163–203

    Article  MATH  Google Scholar 

  44. Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a reynolds-stress turbulence closure. J Fluid Mech 68:537–566

    Article  MATH  Google Scholar 

  45. Simonin O, Deutsch E, Bovin M (1995) Turbulent shear flows 9, Springer-Verlag, chap Large eddy simulation and second-moment closure model of particle fluctuating motion in two phase turbulent shear flows, pp 85–115

    Google Scholar 

  46. He J, Simonin O (1993) Non-equilibrium prediction of the particle-phase stress tensor in vertical pneumatic conveying. In: Proceedings of 5th international symposium on gas-solid flows, ASME, pp 253–263

    Google Scholar 

  47. Grad H (1949) On the kinetic theory of rarefied gases. Commun Pure Appl Math 2:331–407

    Article  MATH  MathSciNet  Google Scholar 

  48. Bertodano MLD, Lee SJ, Lahey RT, Drew DA (1990) The prediction of two-phase flow turbulence and phase distribution phenomena using a reynolds stress model. J Fluids Eng 112:107–113

    Article  Google Scholar 

  49. Lain S, Aliod R (2003) Discussion on second-order dispersed phase Eulerian equations applied to turbulent particle-laden jet flows. Chem Eng Sci 58:4527–4535

    Article  Google Scholar 

  50. Rodi WA (1976) A new algebraic relation for calculating the Reynolds stresses. ZAMM 56:219–221

    Article  Google Scholar 

  51. Pope SB (1975) A more general effective-viscosity hypothesis. J Fluid Mech 72:331–340

    Article  MATH  Google Scholar 

  52. Taulbee DB (1992) An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys Fluids A 4(11):2555–2561

    Article  MATH  Google Scholar 

  53. Gatski TB, Speziale CG (1993) On explicit algebraic stress models for complex turbulent flows. J Fluid Mech 254:59–78

    Google Scholar 

  54. Mashayek F, Taulbee DB (2002) Turbulent gas-solid flows, part II: explicit algebraic models. Numer Heat Transfer Part B 41:31–52

    Article  Google Scholar 

  55. Buyevich YA (1971) Statistical hydromechanics of disperse systems. part 1. Physical background and general equations. J Fluid Mech 49:489–507

    Article  MATH  Google Scholar 

  56. Buyevich YA (1972) Statistical hydromechanics of disperse systems. part 2. Solution of the kinetic equation for suspended particles. J Fluid Mech 52:345–355

    Article  MATH  Google Scholar 

  57. Buyevich YA (1972) Statistical hydromechanics of disperse systems. part 3. Pseudo-turbulent structure of homogeneous suspensions. J Fluid Mech 56:313–336

    Article  MATH  Google Scholar 

  58. Reeks MR (1980) Eulerian direct interaction applied to the statistical motion of particles in a turbulent fluid. J Fluid Mech 97:569–590

    Article  MATH  MathSciNet  Google Scholar 

  59. Reeks MW (1991) On a kinetic equation for the transport of particles in turbulent flows. Phys Fluids A 3:446–456

    Article  MATH  Google Scholar 

  60. Reeks MW (1992) On the continuum equations for dispersed particles in nonuniform flows. Phys Fluids A 4:1290–1303

    Article  MATH  Google Scholar 

  61. Gambosi TI (1994) Gaskinetic theory. Cambridge University Press, Cambridge

    Google Scholar 

  62. Subramaniam S (2000) Statistical representation of a spray as a point process. Phys Fluids 12:2413–2431

    Article  Google Scholar 

  63. Hyland KE, McKee S, Reeks MW (1999) Derivations of a PDF kinetic equation for the transport of particles in turbulent flows. J Phys A: Math Gen 32:6169–6190

    Article  MATH  MathSciNet  Google Scholar 

  64. Gardiner CW (1985) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer, Berlin (Springer series in synergetics)

    Google Scholar 

  65. Kraichnan RH (1958) The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 5:497–543

    Article  MathSciNet  Google Scholar 

  66. Kraichnan RH (1965) Lagrangian-history closure approximation for turbulence. Phys Fluids 8:575–598

    Article  MathSciNet  Google Scholar 

  67. Hyland KE, McKee S, Reeks MW (1999) Exact analytical solutions to turbulent particle flows. Phys Fluids 11:1249–1303

    Article  MATH  MathSciNet  Google Scholar 

  68. Derevich IV (2000) Statistical modelling of mass transfer in turbulent two-phase dispersed flows—1 model development. Int J Heat Mass Trans 43:3709–3723

    Article  MATH  Google Scholar 

  69. Derevich IV (2000) Statistical modelling of mass transfer in turbulent two-phase dispersed flows—2 calculation results. Int J Heat Mass Trans 43:3725–3734

    Article  Google Scholar 

  70. Zaichik LI (1999) A statistical model of particle transport and heat transfer in turbulent shear flows. Phys Fluids 11:1521–1534

    Article  MATH  Google Scholar 

  71. Pandya RVR, Mashayek F (2001) Probability density function modelling of evaporating droplets dispersed in isotropic turbulence. AIAA J 39:1909–1915

    Article  Google Scholar 

  72. Porta A, Voth G, Crawford M, Alexander J, Bodenschatz E (2001) Fluid particle accelerations in fully developed turbulence. Nature 409:1017–1019

    Article  Google Scholar 

  73. Zaichik LI, Simonin O, Alipchenkov VM (2003) Two statistical models for predicting collision rates of inertial particles in homogenous isotropic turbulence. Phys Fluids 15:2995–3005

    Article  MathSciNet  Google Scholar 

  74. Zaichik LI, Alipchenkov VM (2001) A statistical model for transport and deposition of high-inertia colliding particles in turbulent flow. Int J Heat Fluid Flow 22:365–371

    Article  Google Scholar 

  75. Zaichik LI, Pershukov VA, Kozelev MV, Vinberg AA (1997) Modelling of dynamics, heat transfer, and combustion in two-phase turbulent flows: 1. Isothermal flows. Eperimental Therm Fluid Sci 15:291–310

    Article  Google Scholar 

  76. Zaichik LI, Pershukov VA, Kozelev MV, Vinberg AA (1997) Modelling of dynamics, heat transfer, and combustion in two-phase turbulent flows: 2. Flows with heat transfer and combustion. Experimental Therm Fluid Sci 15:311–322

    Article  Google Scholar 

  77. Zaichik LI, Alipchenkov VM (2005) Statistical models for predicting particle dispersion and preferential concentration in turbulent flows. Int J Heat Fluid Flow 26:416–430

    Article  Google Scholar 

  78. Kampen NGV (1974) A cumulant expansion for stochastic linear differential equations. I. Physica 74:215–238

    Article  Google Scholar 

  79. Kampen NGV (1974) A cumulant expansion for stochastic linear differential equations. II. Physica 74:239–247

    Google Scholar 

  80. Pozorski J, Minier JP (2001) Probability density function modelling of dispersed two-phase turbulent flows. Phys Rev E 59:855–863

    Article  Google Scholar 

  81. Pandya RVR, Mashayek F (2003) Non-isothermal dispersed phase of particles in turbulent flow. J Fluid Mech 475:205–245

    Article  MATH  Google Scholar 

  82. Simonin O, Deutsch E, Bovin M (1993) Large eddy simulation and second-moment closure model of particle fluctuating motion in two-phase turbulent shear flows. In: Turbulent shear flows 9

    Google Scholar 

  83. Simonin O, Deutsch E, Minier JP (1993) Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. App Sci Res 51:275–283

    Article  MATH  Google Scholar 

  84. Simonin O (1991) Second-moment prediction of dispersed phase turbulence in particle-laden flows. In: Eighth symposium on turbulent shear flows

    Google Scholar 

  85. Csanady GT (1963) Turbulent diffusion of heavy particles in the atmosphere. J Atmos Scie 20:201–208

    Article  Google Scholar 

  86. Wells MR, Stock DE (1983) The effects of crossing trajectories on the dispersion of particles in a turbulent flow. J Fluid Mech 136:31–62

    Article  Google Scholar 

  87. Haworth DC, Pope SB (1986) A generalized Langevin model for turbulent flows. Phys Fluids 29:387–405

    Article  MATH  MathSciNet  Google Scholar 

  88. Simonin O (2000) Statistical and continuum modelling of turbulent reactive particulate flows. part 1: theoretical derivation of dispersed phase Eulerian modelling from probability density function kinetic equation. In: Lecure series, Von-Karman Institute for Fluid Dynamics

    Google Scholar 

  89. Simonin O (2000) Statistical and continuum modelling of turbulent reactive particulate flows. part 2: application of a two-phase second-moment transport model for prediction of turbulent gas-particle flows. In: Lecure series, Von-Karman Institute for Fluid Dynamics

    Google Scholar 

  90. Monin AS, Yaglom AM (1971) Statistical fluid mechanics. MIT Press, Cambridge

    Google Scholar 

  91. Singh K, Squires KD, Simonin O (2004) Evaluation using an LES database of constitutive relations for fluid-particle velocity correlations in fully developed gas-particle channel flow. In: International conference on multiphase flow

    Google Scholar 

  92. Minier JP, Peirano E (2001) The pdf approach to turbulent polydispersed two-phase ows. Phys Rep 352:1–214

    Article  MATH  MathSciNet  Google Scholar 

  93. Peirano E, Minier JP (2002), Probabilistic formalism and heirarchy of models for polydispersed turbulent two-phase flows. Phys Rev E 65:463, 011–4630, 118

    Google Scholar 

  94. Elperin T, Kleeorin N, Rogachevshii I (1998) Anomalous scalings for fluctuations of inertial particles concentration and large-scale dynamics. Phys Rev E 58(3):3113–3124

    Article  Google Scholar 

  95. Elperin T, Kleeorin N, Rogachevshii I (2000) Passive scalar transport in a random flow with finite renewal time: mean field equations. Phys Rev E 61(3):2617–2625

    Article  Google Scholar 

  96. Elperin T, Kleeorin N (1996) Turbulent thermal diffusion of small inertial particles. Phys Rev Let 76(2):224–227

    Article  Google Scholar 

  97. Williams FA (1958) Spray combustion and atomization. Phys Fluids 1:541–545

    Article  MATH  Google Scholar 

  98. Williams FA (1985) Combustion theory: the theory of chemically reacting flow systems. Benjamin Cummings, Menlo Park

    Google Scholar 

  99. Greenberg JB, Silverman I, Tambour Y (1992) On the origins of spray sectional conservation equations. Combust Flame 93:90–96

    Article  Google Scholar 

  100. Subramaniam S (2001) Statistical modelling of sprays using the droplet distribution function. Phys Fluids 13:624–642

    Article  MathSciNet  Google Scholar 

  101. Domelevo K (2001) The kinetic sectional approach for noncolliding evaporating sprays. Atomization Sprays 11:291–303

    Google Scholar 

  102. Laurent F, Massot M (2001) Multi-fluid modelling of laminar polydispersed spray flames: origin, assumptions and comparrison of sectional and sampling methods. Combust Theory Model 5:537–572

    Article  MATH  Google Scholar 

  103. Laurent F, Massot M, Villedieu P (2004) Eulerian multi-fluid modelling for the numerical simulation of coalescence in polydisperse dense liquid sprays. J Comp Phys 194:505–543

    Article  MATH  MathSciNet  Google Scholar 

  104. Archambault MR (1999) A maximum entropy moment closure approach to modelling the evolution of spray flows. PhD thesis, Stanford

    Google Scholar 

  105. Archambault MR, Edwards CF (2000) Computation of spray dynamics by direct solution of moment transport equations—inclusion of nonlinear momentum exchange. In: Eighth international conference on liquid atomization and spray systems

    Google Scholar 

  106. Archambault MR, Edwards CF, McCormack RW (2003) Computation of spray dynamics by moment transport equations I: theory and development. Atomization Sprays 13:63–87

    Article  Google Scholar 

  107. Archambault MR, Edwards CF, McCormack RW (2003) Computation of spray dynamics by moment transport equations II: application to quasi-one dimensional spray. Atomization Sprays 13:89–115

    Article  Google Scholar 

  108. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  MATH  MathSciNet  Google Scholar 

  109. White AJ, Hounslow MJ (2000) Modelling droplet size distributions in polydispersed wet-steam flows. Int J Heat Mass Trans 43:1873–1884

    Article  MATH  Google Scholar 

  110. Beck JC (2000) Computational modelling of polydisperse sprays without segregation into droplet size classes. PhD thesis, UMIST

    Google Scholar 

  111. Beck JC, Watkins AP (1999) Spray modelling using the moments of the droplet size distribution. In: ILASS-Europe

    Google Scholar 

  112. Beck JC, Watkins AP (2003) The droplet number moments approach to spray modelling: the development of heat and mass transfer sub-models. Int J Heat Fluid Flow 24:242–259

    Article  Google Scholar 

  113. Beck J, Watkins AP (2003) Simulation of water and other non-fuel sprays using a new spray model. Atomization Sprays 13:1–26

    Article  Google Scholar 

  114. Melville WK, Bray KNC (1979) A model of the two-phase turbulent jet. Int J Heat Mass Tran 22:647–656

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Shrimpton .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Shrimpton, J.S., Haeri, S., Scott, S.J. (2014). Eulerian–Eulerian Field Equations. In: Statistical Treatment of Turbulent Polydisperse Particle Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6344-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6344-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6343-5

  • Online ISBN: 978-1-4471-6344-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics