PDF Method: A Stochastic Framework

  • J. S. ShrimptonEmail author
  • S. Haeri
  • Stephen J. Scott
Part of the Green Energy and Technology book series (GREEN)


To model the desired macroscopic quantities the easiest way is to write closed PDEs for specific quantities.


  1. 1.
    van Kampen N (2007) Stochastic processes in physics and chemistry. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Gardiner C (2004) Handbook of stochastic methods for physics, chemistry and natural sciences. Springer-Verlag, New YorkCrossRefzbMATHGoogle Scholar
  3. 3.
    Oksendal B (1995) Stochastic differential equations. An introduction with applications. Springer, New YorkGoogle Scholar
  4. 4.
    Minier JP, Peirano E (2001) The PDF approach to turbulent polydispersed two-phase flows. Phys Rep 352:1–214CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Kloeden P, Platen E (1992) Numerical solution of stochastic differential equations. Springer, New YorkGoogle Scholar
  6. 6.
    Mazur P (1959) On theory of Brownian motion. Physica 25:149–162CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Mazur P, Oppenheim I (1970) Molecular theory of Brownian motion. Physica 50:241–258CrossRefGoogle Scholar
  8. 8.
    Pope SB (1991) Application of the velocity-dissipation probability density function model in inhomogeneous turbulent flows. Phys Fluids A 3:1947–1957CrossRefzbMATHGoogle Scholar
  9. 9.
    Archambault MR, Edwards CF, McCormack RW (2003) Computation of spray dynamics by moment transport equations I: theory and development. Atomization Sprays 13:63–87Google Scholar
  10. 10.
    Williams JJE, Crane RI (1983) Particle collision rate in turbulent flow. Int J Multiphase Flow 9:421–435CrossRefzbMATHGoogle Scholar
  11. 11.
    Hirschfielder J, Curtiss C, Bird R (1954) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  12. 12.
    Peirano E, Leckner B (1998) Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion. Prog Energy Combust Sci 24:259–296CrossRefGoogle Scholar
  13. 13.
    Gidaspow (1994) Multiphase flow and fluidization. Academic Press, New YorkGoogle Scholar
  14. 14.
    Neri A, Gidaspow D (2000) Riser hydrodynamics: simulation using kinetic theory. AIChE J 46:52–67CrossRefGoogle Scholar
  15. 15.
    Gambosi TI (1994) Gaskinetic theory. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Subramaniam S (2000) Statistical representation of a spray as a point process. Phys Fluids 12:2413–2431CrossRefGoogle Scholar
  17. 17.
    Subramaniam S (2001) Statistical modelling of sprays using the droplet distribution function. Phys Fluids 13:624–642CrossRefMathSciNetGoogle Scholar
  18. 18.
    Scott SJ (2006) A PDF based method for modelling polysized particle laden turbulent flows without size-class discretisation. PhD thesis, Imperial College, LondonGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  2. 2.University of SouthamptonSouthamptonUK
  3. 3.YorkUK

Personalised recommendations