Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 355 Accesses

Abstract

Multi-phase flows are encountered in many engineering and environmental systems. For example, controlling combustion to enable efficient fuel consumption is only possible by understanding the atomization, dispersion, and evaporation processes of fuel droplets in the combustion system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorokhovski M, Herrmann M (2008) Modeling primary atomization. Annu Rev Fluid Mech 40:343–366

    Article  MathSciNet  Google Scholar 

  2. Crowe C (2000) On models for turbulence modulation in fluid/particle flows. Int J Multiphase Flow 26:719–727

    Article  MATH  Google Scholar 

  3. Scott SJ, Karnik AU, Shrimpton JS (2009) On the quantification of preferential accumulation. Int J Heat Fluid Flow 30:789–795

    Article  Google Scholar 

  4. Shaw R (2003) Particle-turbulence interactions in atmospheric clouds. Annu Rev Fluid Mech 35:183–227

    Article  Google Scholar 

  5. Shrimpton J (2003) Pulsed charged sprays: application ro disi engines during early injection. Int J Numer Meth Eng 58:513–536

    Article  MATH  Google Scholar 

  6. Feath G (1983) Evaporation and combustion in sprays. IEEE Trans 1A–19:754–758

    Google Scholar 

  7. Grace J (1986) Contacting modes and behaviour classification of gas-solid and other two-phase suspensions. Can J of Chem Eng 64:1953–1966

    Article  Google Scholar 

  8. Gidaspow (1994) Multiphase flow and fluidization. Academic Press, New York

    Google Scholar 

  9. Geldart D (1973) Types of gas fluidization. Powder Technol 7:185–195

    Article  Google Scholar 

  10. Clift R, Grace J, Weber M (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  11. Bi HT, Grace JR (1995) Flow regime diagrams for gas-solid fluidization and upward transport. Int J Multiphase Flow 21:1229–1236

    Article  MATH  Google Scholar 

  12. Bi HT, Grace JR, Lim KS (1995) Transition from bubbling to turbulent fluidization. Ind Eng Chem Res 34:4003–4008

    Article  Google Scholar 

  13. Mandhane M, Gregory GA, Aziz K (1974) A flow pattern map for gas-liquid flow in horizontal pipes. Int J Multiphase Flow 1:537–553

    Article  Google Scholar 

  14. Beggs D, Brill J (1973) A study of two-phase flow in inclined pipes. J Petrol Technol 25: 607–617

    Google Scholar 

  15. Xu J, Cheng P, Zhao T (1999) Gas liquid two-phase flow regimes in rectangular channels with mini/micro gaps. Int J Multiphase Flow 25:411–432

    Article  MATH  Google Scholar 

  16. Furukawa T, Fukano T (2001) Effect of lquid viscosity on flow patterns in vertical upward gas-liquid two-phase flow. Int J Multiphase Flow 27:1109–1126

    Article  MATH  Google Scholar 

  17. Taitel Y, Bornea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J 26:345–354

    Article  Google Scholar 

  18. Barnea D, Shoham O, Taitel Y, Dukler AE (1980) Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Int J Multiphase Flow 6:217–225

    Article  Google Scholar 

  19. Liu Y, Yang W, Wang J (2008) Experimental study for the stratified to slug flow regime transition mechanism of gas-oil two-phase flow in horizontal pipe. Frontiers Energy Power Eng China 2:152–157

    Article  Google Scholar 

  20. Pantzali M, Mouza A, Paras S (2008) Counter-current gas-liquid flow and incipient flooding in inclined small diameter tubes. Chem Eng Sci 63:3966–3978

    Article  Google Scholar 

  21. Dyment A, Boudlal A (2004) A theoretical model for gas-liquid slug flow in down inclined ducts. Int J Multiphase Flow 30:521–550

    Article  MATH  Google Scholar 

  22. Zapke A, Krger DG (2000) Countercurrent gas-liquid flow in inclined and vertical ducts-i: flow patterns, pressure drop characteristics and flooding. Int J Multiphase Flow 26:1439–1455

    Article  MATH  Google Scholar 

  23. Grolman E, Fortuin JMH (1997) Gas-liquid flow in slightly inclined pipes. Chem Eng Sci 52:4461–4471

    Article  Google Scholar 

  24. Riley JJ, Patterson GS (1974) Diffusion experiements with numerically integrated isotropic turbulence. Phys Fluids 17:292–297

    Article  MATH  Google Scholar 

  25. Rogallo R (1981) Numerical experiments in homogeneous turbulence. Technical Report 81315, NASA

    Google Scholar 

  26. Squires K, Eaton J (1990) Preferential concentration of particles by turbulence. Phys Fluids 3:1169–1178

    Article  Google Scholar 

  27. Squires K, Eaton J (1991) Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J Fluid Mech 226:1–31

    Article  Google Scholar 

  28. Squires K, Eaton J (1991) Lagrangian and eulerian statistics obtained from direct numerical simulations of homogeneous turbulence. Phys Fluids 3:130–143

    Article  MATH  Google Scholar 

  29. Eaton J (2009) Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int J Multiphase Flow 35:792–800

    Article  Google Scholar 

  30. Elghobashi S, Truesdell G (1992) Direct simulation of particle dispersion in decaying isotropic turbulence. J Fluid Mech 242:655–700

    Article  Google Scholar 

  31. Elghobashi S, Truesdell G (1993) On the two-way interaction between homogeneous turbulence and dispersed solid particles part 1: turbulence modification. Phys Fluids A5:1790–1801

    Article  Google Scholar 

  32. Boivin M, Simonin O, Squires KD (1998) Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J Fluid Mech 375:235–263

    Article  MATH  Google Scholar 

  33. Lavieville J, Deutsch E, Simonin O (1995) Large eddy simulation of interactions between colliding particles and a homogeneous isotropic turbulence field. gas-particle flows. ASME 228:359–369

    Google Scholar 

  34. Wang Q, Squires K, Chen H, McLaughlin J (1997) On the role of the lift force in turbulence simulations of particle deposition. Int J Multiphase Flow 23:749–763

    Article  MATH  Google Scholar 

  35. Haeri S, Shrimpton J (2012) On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int J Multiphase Flow 40:38–55

    Article  Google Scholar 

  36. Haeri S, Shrimpton J (2013) A correlation for the calculation of the local nusselt number around circular cylinders in the range 10 \(\le \) re \(\le \) 250 and 0.1 \(\le \) pr \(\le \) 40. Int J Heat Mass Transfer 59:219–229

    Article  Google Scholar 

  37. Haeri S, Shrimpton J (2013) A new implicit fictitious domain method for the simulation of flow in complex geometries with heat transfer. J Comput Phys 237:21–45

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Shrimpton .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Shrimpton, J.S., Haeri, S., Scott, S.J. (2014). Introduction. In: Statistical Treatment of Turbulent Polydisperse Particle Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6344-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6344-2_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6343-5

  • Online ISBN: 978-1-4471-6344-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics