Skip to main content

Cellular Therapies in Nerve Regeneration

  • Chapter
  • First Online:
Plastic and Reconstructive Surgery

Abstract

Currently, allogenic nerve transplantation is the only feasible treatment option for patients suffering from extensive peripheral nerve defects. However, it requires the use of immunosuppressive drugs to prevent allograft rejection. The most promising approach to obtain satisfactory sensory and functional restoration of large nerve defects is cellular therapy, which due to paracrine properties of cells can facilitate nerve regeneration and prevent nerve allograft rejection. Among cellular therapies that could be successfully applied in peripheral nerve regeneration are Schwann cells and mesenchymal stem cells/stromal cells (MSC), including bone marrow-derived mesenchymal stem cells, umbilical cord-derived mesenchymal stem cells, and adipose tissue-derived stem cells. MSC are a great candidate for supportive cellular therapy for nerve allograft transplantation due to their immunomodulatory properties.

Based on their experience in nerve repair, Siemionow’s group developed a new treatment modality of epineural sheath conduit augmented with bone marrow derived MSC. Epineural sheath is a biologic conduit created by removal of fascicles from the nerve. It is easily available from allogenic donor nerves, has low immunogenic potential, and expresses laminin B2, an extracellular matrix component crucial for axon growth. Combining epineural sheath biological conduit with MSC can facilitate regeneration of difficult to restore long-nerve defects.

This chapter describes currently tested and future sources of cellular therapies for nerve regeneration. It also presents a series of Siemionow’s group studies which led to development of in vitro created biological conduit of epineural sheath supported with bone marrow derived MSC and successfully tested this new conduit in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998;45(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  2. Best TJ, Mackinnon SE. Peripheral nerve revascularization: a current literature review. J Reconstr Microsurg. 1994;10(3):193–204.

    Article  CAS  PubMed  Google Scholar 

  3. Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26(2):151–60.

    Article  PubMed  Google Scholar 

  4. Karabekmez FE, Duymaz A, Moran SL. Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. Hand (N Y). 2009;4(3):245–9.

    Article  Google Scholar 

  5. Deal DN, Griffin JW, Hogan MV. Nerve conduits for nerve repair or reconstruction. J Am Acad Orthop Surg. 2012;20(2):63–8.

    Article  PubMed  Google Scholar 

  6. Strauch B, Ferder M, Lovelle-Allen S, Moore K, Kim DJ, Llena J. Determining the maximal length of a vein conduit used as an interposition graft for nerve regeneration. J Reconstr Microsurg. 1996;12(8):521–7.

    Article  CAS  PubMed  Google Scholar 

  7. Terenghi G, Wiberg M, Kingham PJ. Chapter 21: use of stem cells for improving nerve regeneration. Int Rev Neurobiol. 2009;87:393–403.

    Article  CAS  PubMed  Google Scholar 

  8. Oliveira JT, Mostacada K, de Lima S, Martinez AM. Bone marrow mesenchymal stem cell transplantation for improving nerve regeneration. Int Rev Neurobiol. 2013;108:59–77.

    Article  CAS  PubMed  Google Scholar 

  9. Widgerow AD, Salibian AA, Lalezari S, Evans GR. Neuromodulatory nerve regeneration: adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J Neurosci Res. 2013;91(12):1517–24.

    Article  CAS  PubMed  Google Scholar 

  10. Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 2000;6(2):119–27.

    Article  CAS  PubMed  Google Scholar 

  11. Wegmeyer H, Bröske AM, Leddin M, Kuentzer K, Nisslbeck AK, Hupfeld J, Wiechmann K, Kuhlen J, von Schwerin C, Stein C, Knothe S, Funk J, Huss R, Neubauer M. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev. 2013;22(19):2606–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tohill M, Mantovani C, Wiberg M, Terenghi G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuse D, Kitada M, Kohama M, Nishikawa K, Makinoshima H, Wakao S, Fujiyoshi Y, Heike T, Nakahata T, Akutsu H, Umezawa A, Harigae H, Kira J, Dezawa M. Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration. J Neuropathol Exp Neurol. 2010;69(9):973–85.

    Article  CAS  PubMed  Google Scholar 

  14. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74.

    Article  CAS  PubMed  Google Scholar 

  15. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2010;63(9):1544–52.

    Article  PubMed  Google Scholar 

  16. Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, Clark KA, Sun B, Peault B, Huard J. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest. 2014;124(4):1745–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.

    Google Scholar 

  18. Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E. Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells. Int J Stem Cells. 2014;7(2):118–126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806.

    CAS  Google Scholar 

  20. Gao Y, Liu F, Zhang L, Su X, Liu JY, Li Y. Acellular blood vessels combined human hair follicle mesenchymal stem cells for engineering of functional arterial grafts. Ann Biomed Eng. 2014;42(10):2177–89.

    Article  PubMed  Google Scholar 

  21. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Wan W, Ratajczak J, Wojakowski W, Kucia M. Hunt for pluripotent stem cell – regenerative medicine search for almighty cell. J Autoimmun. 2008;30(3):151–62.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kucia M, Wysoczynski M, Ratajczak J, Ratajczak MZ. Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res. 2008;331(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  23. Ratajczak MZ, Shin DM, Liu R, Mierzejewska K, Ratajczak J, Kucia M, Zuba-Surma EK. Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation–an update and comparison to other primitive small stem cells isolated from adult tissues. Aging (Albany NY). 2012;4(4):235–46.

    CAS  Google Scholar 

  24. Ratajczak J, Zuba-Surma E, Klich I, Liu R, Wysoczynski M, Greco N, Kucia M, Laughlin MJ, Ratajczak MZ. Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia. 2011;25(8):1278–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4(1):3–11.

    Article  PubMed  Google Scholar 

  26. Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, Ikada Y, Nakamura H. Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res A. 2014;102(5):1370–8.

    Article  PubMed  Google Scholar 

  27. Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, Li S. Induced pluripotent stem cells for neural tissue engineering. Biomaterials. 2011;32(22):5023–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Macia A, Sanchez L, Ligero G, Garcia-Parez JL, Menendez P. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28(9):1568–70.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Strauch B. Use of nerve conduits in peripheral nerve repair. Hand Clin. 2000;16(1):123–30.

    CAS  PubMed  Google Scholar 

  30. Siemionow M, Duggan W, Brzezicki G, Klimczak A, Grykien C, Gatherwright J, Nair D. Peripheral nerve defect repair with epineural tubes supported with bone marrow stromal cells: a preliminary report. Ann Plast Surg. 2011;67(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  31. Nijhuis TH, Brzezicki G, Klimczak A, Siemionow M. Isogenic venous graft supported with bone marrow stromal cells as a natural conduit for bridging a 20 mm nerve gap. Microsurgery. 2010;30(8):639–45.

    Article  PubMed  Google Scholar 

  32. Nijhuis TH, Bodar CW, van Neck JW, Walbeehm ET, Siemionow M, Madajka M, Cwykiel J, Blok JH, Hovius SE. Natural conduits for bridging a 15-mm nerve defect: comparison of the vein supported by muscle and bone marrow stromal cells with a nerve autograft. J Plast Reconstr Aesthet Surg. 2013;66(2):251–9.

    Article  PubMed  Google Scholar 

  33. Madajka M, Mendiola A, Przybyla B, Siemionow M. Bone Marrow Derived Stromal Cells Therapy and Their Neurotrophic Activity in Peripheral Nerve Regeneration (abstract), Ohio Valley Society of Plastic Surgeons annual meeting, Cleveland, Ohio, USA, 2010, May 14–16.

    Google Scholar 

  34. Madajka M, Mendiola A, Siemionow M. Nerve gap repair with allogenic epineural tubes supported with bone marrow stromal cells (BMSC) therapy as an alternative to autograft repair (abstract), 56th annual meeting of the Plastic Surgery Research Council, Louisville, Kentucky, USA, 2011, April 29.

    Google Scholar 

  35. Madajka M, Mendiola A, Siemionow M. Epineural Sheath Conduit: A New Technique for Peripheral Nerve Restoration (abstract), Plastic Surgery Research Council’s 57th Annual Meeting, Ann Arbor, Michigan, USA, 2012, June 15.

    Google Scholar 

  36. Łukaszuk M, Kwiecień G, Madajka M, Uygur S, Drews M, Siemionow M. Repair of the peripheral nerve gap with epineural sheath conduit to prevent muscle denervation atrophy in the diabetic rat model. Pol Przegl Chir. 2013;85(7):387–94.

    PubMed  Google Scholar 

  37. Madajka M, Ozturk C, Lukaszuk M, Kwiecien G, Szopinski J, Siemionow V, Siemionow M. Restoration of Long Nerve Defects with Epineural Sheath Conduit Supported with Bone Marrow Stromal Cells. A Preliminary Report (abstract), Session: Chronic Allograft Injury, American Transplant Congress, Seattle, Washington, USA, 2013, May 20–22.

    Google Scholar 

  38. Madajka M, Ozturk C, Szopinski J, Uygur HS, Kwiecien G, Bobkiewicz A, Siemionow V, Siemionow M. Long Nerve Defects Repair with Epineural Sheath Conduit – Large Animal Model (abstract), ASRM Annual Meeting, Kauai, Hawaii, USA, 2014, January 11–14.

    Google Scholar 

  39. Siemionow M, Kwiecien G, Madajka M, Uygur H, Cwykiel J, Bobkiewicz A, Caplan A. Human epineural sheath conduit augmented with human mesenchymal stem cells as a new biologic construct supporting peripheral nerve regeneration: a preliminary report. Plast Reconstr Surg. 2014;134(4 Suppl 1):67–8.

    Google Scholar 

  40. Maria Siemionow, Grzegorz Kwiecien, Maria Madajka, Safak Uygur, Joanna Cwykiel, Adam Bobkiewicz, Arnold Caplan. Human Epineural Sheath Conduit Augmented with Human Mesenchymal Stem Cells as a New Biologic Construct Supporting Peripheral Nerve Regeneration: A Preliminary Report. (abstract) ASPS, Chicago 2014, Oct 10–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Z. Siemionow MD, PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Cwykiel, J., Tfaily, E.B., Siemionow, M.Z. (2015). Cellular Therapies in Nerve Regeneration. In: Siemionow, M. (eds) Plastic and Reconstructive Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-6335-0_76

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6335-0_76

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6334-3

  • Online ISBN: 978-1-4471-6335-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics