Skip to main content

Robotics in Cardiac Surgery: Basic Principles

  • Chapter
  • First Online:
Atlas of Robotic Cardiac Surgery

Abstract

The recent use of robotic surgical assistance has spawned an entirely new way of operating on many human systems. These devices provide the link to the least invasive cardiac operations, including coronary artery and mitral valve surgery. This chapter describes the evolution of robotic surgery as well as enabling robots in other areas of medicine. Moreover, the ergonomic aspects of complex surgical tele-manipulation systems are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goertz RC. Fundamentals of general-purpose remote manipulators. Necleonics. 1952;10:36–45.

    CAS  Google Scholar 

  2. Bejczy AK, Salisbury JK. Kinesthetic coupling for remote manipulators. Comp Med Eng. 1983;2:48–62.

    Google Scholar 

  3. Taylor RH, Jensen M, Whitcomb L, Barnes S, Kumar R, Stoianovici D, et al. A steady-hand robotic system for microsurgical augmentation. Rob Res. 1999;12:1201–10.

    Article  Google Scholar 

  4. Falk V, Walther T, Autschbach R, Diegeler A, Battellini R, Mohr FW. Robot assisted minimally invasive mitral valve solo surgery. J Thorac Cardiovasc Surg. 1998;118:470–1.

    Article  Google Scholar 

  5. Drake JM, Joy M, Goldenberg A, Kreindler D. Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery. 1991;29:27–33.

    Article  CAS  PubMed  Google Scholar 

  6. Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot. 2007;3:301–6.

    Article  PubMed  Google Scholar 

  7. Padgett DE, Thompson MT, Conditt MA, et al. Accuracy of robotic arm assisted acetabular cup implantation. 6th annual MIRA congress, Athens, 11–13 May 2011.

    Google Scholar 

  8. Varma TR, Eldridge P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot. 2006;2:107–13.

    Article  CAS  PubMed  Google Scholar 

  9. Tian Z, Lu W, Wang T, Ma B, Zhao Q, Zhang G. Application of a robotic telemanipulation system in stereotactic surgery. Stereotact Funct Neurosurg. 2008;86:54–61.

    Article  PubMed  Google Scholar 

  10. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37:693.

    CAS  PubMed  Google Scholar 

  11. Banz R, Bolliger M, Muller S, Santelli C, Riener R. A method of estimating the degree of active participation during stepping in a driven gait orthosis based on actuator force profile matching. IEEE Trans Neural Syst Rehabil Eng. 2009;17:15–22.

    Article  PubMed  Google Scholar 

  12. Sharma A, Wong D, Weidlich G, Fogarty T, Jack A, Sumanaweera T, et al. Non-invasive stereotactic radiosurgery (CyberHeart) for creation of ablation lesions in the atrium. Heart Rhythm. 2010;7(6):802–10.

    Google Scholar 

  13. Falk V, Mc Loughlin J, Guthart G, Sailsbury K, Walther T, Gummert JF, et al. Dexterity enhancement in endoscopic surgery by a computer controlled mechanical wrist. Min Inv Ther Allied Tech. 1999;8:235–42.

    Article  Google Scholar 

  14. Falk V. Robotic surgery. In: Yim AP, Hazelrigg SR, Izzat MB, Landrenaeau RJ, Mack MJ, Naunheim KS, editors. Minimal access cardiothoracic surgery. Philadelphia: WB Saunders; 1999. p. 623–9.

    Google Scholar 

  15. Bowersox JC, Shah A, Jensen J, Hill J, Cordts PR, Green PS. Vascular applications of telepresence surgery: initial feasibility studies in swine. J Vasc Surg. 1996;23:281–7.

    Article  CAS  PubMed  Google Scholar 

  16. Bowersox JC, Cordts PR, LaPorta AJ. Use of an intuitive telemanipulator system for remote trauma surgery: an experimental study. J Am Coll Surg. 1998;186:615–21.

    Article  CAS  PubMed  Google Scholar 

  17. Schurr MO, Breitwieser H, Melzer A, Kunert W, Schmitt M, Vosges U, et al. Experimental telemanipulation in endoscopic surgery. Surg Laparosc Endosc. 1996;6:167–75.

    Article  CAS  PubMed  Google Scholar 

  18. Falk V, Mintz D, Grünenfelder J, Fann JI, Burdon TA. Influence of 3D vision on surgical telemanipulator performance. Surg Endosc. 2001;15:1282–8.

    Article  CAS  PubMed  Google Scholar 

  19. Itkowitz B, Zhao T, DiMaio S, Zhao W, Hasser CJ, Curet MJ, et al. Virtual measurement tool for minimally invasive surgery. United States Patent Application US20100317965 A1.

    Google Scholar 

  20. Ortmeier T, Weiss H, Falk V. Design requirements for a new robot for minimally invasive surgery. Ind Robot. 2004;31:493–8.

    Article  Google Scholar 

  21. Steven D, Servatius H, Rostock T, Hoffmann B, Drewitz I, Müllerleile K, et al. Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. J Cardiovasc Electrophysiol. 2010;21(1):6–12.

    Google Scholar 

  22. Falk V, Gummert J, Walther T, Hayesi M, Berry GJ, Mohr FW. Quality of computer enhanced endoscopic coronary artery bypass graft anastomosis—comparison to conventional technique. Eur J Cardiothorac Surg. 1999;13:260–6.

    Article  Google Scholar 

  23. Stephenson ER, Ducko CT, Sankholkar MS, Hoenicke EM, Prophet GA, Damiano RJ. Computer-assisted endoscopic coronary artery bypass anastomosis: a chronic animal study. Ann Thorac Surg. 1999;68:838–43.

    Article  PubMed  Google Scholar 

  24. Loulmet D, Carpentier A, d’Attellis N, Mill F, Rosa D, Guthart G, et al. First endoscopic coronary artery bypass grafting using computer assisted instruments. J Thorac Cardiovasc Surg. 1999;118:4–10.

    Article  CAS  PubMed  Google Scholar 

  25. Carpentier A, Loulmet D, Aupecle B, Keiffer J, Tournay D, Fiemeyer A. Computer-assisted open heart surgery: first case operated on with success. C R Acad Sci III. 1998;321:437–42.

    Article  CAS  PubMed  Google Scholar 

  26. Mohr FW, Falk V, Diegeler A, Autschbach R. Computer enhanced coronary artery bypass surgery. J Thorac Cardiovasc Surg. 1999;117:1212–3.

    Article  CAS  PubMed  Google Scholar 

  27. Falk V, Autschbach R, Walther T, Diegeler A, Chitwood WR, Mohr FW. Computer enhanced mitral valve surgery—towards a total endoscopic procedure. Sem Thorac Surg. 1999;11:244–9.

    CAS  Google Scholar 

  28. Falk V, Diegeler A, Walther T, Banusch J, Brucerius J, Raumans J, et al. Total endoscopic coronary artery bypass grafting. Eur J Cardiothorac Surg. 2000;17:38–45.

    Article  CAS  PubMed  Google Scholar 

  29. Mohr FW, Falk V, Diegeler A, Walther T, Bucerius J, Jacobs S, et al. Computer-enhanced robotic cardiac surgery—experience in 148 patients. J Thorac Cardiovasc Surg. 2001;121:842–53.

    Article  CAS  PubMed  Google Scholar 

  30. Reichenspurner H, Damiano RJ, Mack M, Boehm DH, Gulbins H, Detter C, et al. Use of the voice-controlled and computer-assisted surgical system Zeus for endoscopic coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1999;118:11–6.

    Article  CAS  PubMed  Google Scholar 

  31. Damiano RJ, Ehrman WJ, Ducko CT, Tabaie HA, Stephenson ER, Kingsley CP. Chambers CE: initial United States clinical trial of robotically assisted coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2000;119:77–82.

    Article  PubMed  Google Scholar 

  32. Kappert U, Cichon R, Schneider J, Guliemos V, Tugtekin SM, Matschke K, et al. Robotic coronary artery surgery—the evolution of a new minimally invasive approach in coronary artery surgery. Thorac Cardiovasc Surg. 2000;48:193–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kappert U, Cichon R, Schneider J, Schramm I, Guliemos V, Schueler S. Closed chest bilateral mammary artery grafting in double vessel coronary artery disease. Ann Thorac Surg. 2000;70:1699–701.

    Article  CAS  PubMed  Google Scholar 

  34. Bonatti J, Schachner T, Bonaros N, Oehlinger A, Wiedemann D, Ruetzler E, et al. Effectiveness and safety of total endoscopic left internal mammary artery bypass graft to the left anterior descending artery. Am J Cardiol. 2009;104:1684–8.

    Article  PubMed  Google Scholar 

  35. Schachner T, Bonaros N, Wiedemann D, Weidinger F, Feuchtner G, et al. Training surgeons to perform robotically assisted totally endoscopic coronary surgery. Ann Thorac Surg. 2009;88:523–7.

    Article  PubMed  Google Scholar 

  36. Falk V, Grünenfelder J, Fann JI, Daunt D, Burdon TA. Total endoscopic computer enhanced beating heart coronary artery bypass grafting. Ann Thorac Surg. 2000;70:2029–33.

    Article  CAS  PubMed  Google Scholar 

  37. Falk V, Diegeler A, Walther T, Löscher N, Vogel B, Ulmann C, et al. Endoscopic coronary artery bypass grafting on the beating heart using a computer enhanced telemanipulation system. Heart Surg Forum. 1999;2:199–205.

    CAS  PubMed  Google Scholar 

  38. Falk V, Diegeler A, Walther T, Jacobs S, Raumans J, Mohr FW. Total endoscopic off-pump coronary artery bypass grafting. Heart Surg Forum. 2000;3:29–31.

    CAS  PubMed  Google Scholar 

  39. Reichenspurner H, Boehm DH, Gulbins H, Detter C, Damiano R, Mack M, et al. Robotically assisted endoscopic coronary artery bypass procedures without cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1999;118:960–1.

    Article  CAS  PubMed  Google Scholar 

  40. Kappert U, Cichon R, Schneider J, Gulielmos V, Ahmadzade T, Nicolai J, et al. Technique of closed chest coronary artery surgery on the beating heart. Eur J Cardiothorac Surg. 2001;20:765–9.

    Article  CAS  PubMed  Google Scholar 

  41. De Cannière D, Wimmer-Greinecker G, Cichon R, Gulielmos V, Van Praet F, Seshadri–Kreaden U, et al. Feasibility, safety and efficacy of closed chest CABG: early European experience. J Thorac Cardiovasc. 2007;134:710–6.

    Article  Google Scholar 

  42. Koransky ML, Tavana ML, Yamaguchi A, Robbins RC. A comparison of the stabilizing properties of devices for the performance of beating heart coronary artery surgery. HSF. 2001;4:111.

    Google Scholar 

  43. Falk V. Manual control and tracking—a human factor analysis relevant for beating heart surgery. Ann Thorac Surg. 2002;74:624–8.

    Article  PubMed  Google Scholar 

  44. Jacobs S, Holzhey D, Kiaii B, Onnasch J, Walther T, Mohr FW, et al. Limitations for manual and telemanipulator assisted motion tracking—implications for endoscopic beating heart surgery. Ann Thorac Surg. 2003;76:2029–35.

    Article  PubMed  Google Scholar 

  45. Inoue S, Toyoda K, Kobayashi Y, Fujie MG. Autonomous avoidance based on motion delay of master-slave surgical robot. Conf Proc IEEE Eng Med Biol Soc. 2009:5080–3.

    Google Scholar 

  46. Ortmaier T, Gröger M, Boehm DH, Falk V, Hirzinger G. Motion estimation in beating heart surgery. IEEE Trans Biomed Eng. 2005;52:1729–40.

    Article  PubMed  Google Scholar 

  47. Falk V, Walther T, Stein H, Jacobs S, Walther C, Rastan A, et al. Facilitated endoscopic beating heart coronary bypass grafting using a magnetic coupling device. J Thorac Cardiovasc Surg. 2003;126:1575–9.

    Article  PubMed  Google Scholar 

  48. Trejos AL, Patel RV, Ross I, Kiaii B. Optimizing port placement for robot-assisted minimally invasive cardiac surgery. Int J Med Robot. 2007;3:355–64.

    Article  CAS  PubMed  Google Scholar 

  49. Falk V, Mourgues F, Vieville T, Jacobs S, Holzhey D, Walther T, et al. Augmented reality for intraoperative guidance in endoscopic coronary artery bypass grafting. Surg Tech Int. 2005;14:231–5.

    Google Scholar 

  50. Falk V, Mourgues F, Adhami L, Jacobs S, Thiele H, Nitzsche S, et al. Cardio navigation—planning, simulation and augmented reality in robotic assisted endoscopic bypass grafting. Ann Thorac Surg. 2005;79:2040–8.

    Article  PubMed  Google Scholar 

  51. Freschi C, Troia E, Ferrari V, Megali G, Pietrabissa A, Mosca F. Ultrasound guided robotic biopsy using augmented reality and human-robot cooperative control. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5110–3.

    CAS  PubMed  Google Scholar 

  52. Lee SL, Lerotic M, Vitiello V, Giannarou S, Kwok KW, Visentini-Scarzanella M, et al. From medical images to minimally invasive intervention: computer assistance for robotic surgery. Comput Med Imaging Graph. 2010;34:33–45.

    Article  PubMed  Google Scholar 

  53. Falk V, Moll F, Rosa D, Daunt D, Diegeler A, Walther T, et al. Transabdominal endoscopic computer enhanced coronary artery bypass grafting. Ann Thorac Surg. 1999;68:1555–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Falk MD, PhD .

Editor information

Editors and Affiliations

Appendix

Appendix

Accuracy: Accuracy is the degree of veracity. The closer a system’s measurements to the accepted value, the more accurate the system is considered to be.

Cartesian Coordinates: Cartesian Coordinates are used to define the kinematics of an object. In a Cartesian coordinate system the position of each joint can be mathematically described.

Degree of freedom: Degrees of freedom (DOF) are the set of independent displacements and/or rotations that specify the position and orientation of a body or system. A minimum of 6° of freedom is required for free orientation and position in 3-space.

Force Feed Back: Force Feed Back relates to one quality of haptics. It provides the operator with a sense of the force at the site of remote operation. Remote controlled telemanipulators reproduce some contact forces to the operator.

Haptics: Haptics refers to the sense of touch. Haptic or tactile feedback technology is used to provide an operator with a sense of touch by applying forces or other tactile qualities such as compliance, texture or temperature.

Hand-Eye-Alignment: The human operator usually works in the direction of his sight with good hand-eye alignment. When an endoscope is used and inserted at an angle different from the line of sight, the video-image used for visualization displays the environment from a different angle. Depending on the degree of hand-eye misalignment, operation becomes difficult. Telemanipulation systems can restore hand-eye-alignment by automatically compensating for scope angulation.

Kinematics: Kinematics describes the motion of objects without consideration of the causes leading to the motion. A robotic arm can be considered as a system of rigid bodies linked together by mechanical joints. The position of each point in such a kinematic chain can be described by Cartesian coordinates.

Mechatronics: The term mechatronics is best described as a combination of Computer Science, mechanical control and electrical engineering. A surgical telemanipulator can be seen as a mechatronic device.

Model guided Surgery: For model guided surgery an accurate model of the patient is usually created from different imaging sources. The region of interest is scanned and uploaded into the computer system. Datasets from different sources can be combined through data fusion techniques. The resulting dataset can then be used to render a 3D-model of anatomical structures. If a mechatronic system such as a surgical telemanipulator is to be used, for planning purposes a model of the system is also required. System/Patient interaction, Setup, path-planning can all be simulated in such model.

Navigation: Navigation Systems are used to follow a tool within an image. Reference points are needed to detect orientation and position of the patient and the tool in space. Navigation systems use infrared light sources, electromagnetic waves or other energy sources to detect the reference points in space.

Precision: precision is the degree of reproducibility.

Registration: Registration is a computational process to locate and orient preoperative imaging data with the position of the patient on the operating room table. As image data are usually acquired at different perspectives they relate to different coordinate systems. Image registration is the process of transforming the different sets of data into the same frame of reference (one coordinate system).

Remote center kinematics: Remote center kinematics are applied to limit motion of the tool at the entry point.

Segmentation: Segmentation refers to the process of partitioning a digital image into multiple segments (sets of pixels). Image segmentation is used to locate and visualize objects and boundaries in images. Depending on image source and quality and Segmentation is either performed manually or threshold based at various levels of automation.

Shared control: With shared-control systems, the operator performs the procedure with the use of a robot that offers steady-hand manipulations of the instrument. This is in contrast to supervisory-control systems that act autonomously with the operator observing.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Falk, V., Stein, H. (2014). Robotics in Cardiac Surgery: Basic Principles. In: Chitwood, Jr., W. (eds) Atlas of Robotic Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-6332-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6332-9_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6331-2

  • Online ISBN: 978-1-4471-6332-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics