Skip to main content

Textures of Non-metals

  • Chapter
  • First Online:
Crystallographic Texture of Materials

Part of the book series: Engineering Materials and Processes ((EMP))

  • 4046 Accesses

Abstract

The preceding chapters mainly dealt with texture formation in metallic materials. However, textures do form in non-metallic materials also during processing. The mechanism of texture evolution in non-metals is similar to that in metals. Although the method of texture measurement is essentially the same for all crystalline materials, however, non-metallic materials pose some complications in the measurement technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Humbert M, Wagner F, Philippe MJ, Esling C (1991) Relation between texture and anisotropic properties-some applications to low symmetry materials. Textures Microstruct 14:443–461

    Article  Google Scholar 

  2. Kallend JS, Kocks UF, Rollett AD, Wenk HR (1991) Operational texture analysis. Mater Sci Eng A 132:1–11

    Article  Google Scholar 

  3. Ferrari M, Lutterotti L, Matthies S, Polonioli P, Wenk HR (1996) New opportunities in the texture and stress field by the whole pattern analysis. In: European Powder Diffraction: epdic Iv, Pts 1 and 2

    Google Scholar 

  4. Lutterotti L, Matthies S, Wenk HR, Schultz AS, Richardson JW (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594–600

    Article  Google Scholar 

  5. Matthies S, Lutterotti L, Wenk HR (1997) Advances in texture analysis from diffraction spectra. J Appl Crystallogr 30:31–42

    Article  Google Scholar 

  6. Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk HR (2007) Rietveld texture analysis from diffraction images. Z. Kristall 125–130

    Google Scholar 

  7. Suvaci E, Messing GL, TTP (2002) Textured alumina ceramics by uniaxial pressing. Euro Ceramics Vii, Pt 1–3

    Google Scholar 

  8. Suzuki TS, Sakka Y (2002) Control of texture in ZnO by slip casting in a strong magnetic field and heating. Chem Lett 12:1204–1205

    Article  Google Scholar 

  9. Suzuki TS, Sakka Y (2002) Fabrication of textured titania by slip casting in a high magnetic field followed by heating. Jpn J Appl Phys 41:L1272–L1274

    Article  Google Scholar 

  10. Suzuki TS, Uchikoshi T, Sakka Y (2006) Texture development in alumina composites by slip casting in a strong magnetic field. J Ceram Soc Jpn 114:59–62

    Article  Google Scholar 

  11. Stubna I, Trnovcova V (1998) The effect of texture on thermal expansion of extruded ceramics. Ceram-Silik 42:21–24

    Google Scholar 

  12. Wu M, Li Y, Wang D, Yin Q (2008) Highly textured (Na1/2Bi1/2)(0.94)Ba0.06TiO3 ceramics prepared by the screen-printing multilayer grain growth technique. Ceram Inter 34:753–756

    Article  Google Scholar 

  13. Ning JL, Jiang DM, Shim KB (2006) Preparation of textured zinc oxide ceramics by extrusion and spark plasma sintering. Adv Appl Ceram 105:265–269

    Article  Google Scholar 

  14. West DL, Payne DA (2003) Reactive-templated grain growth of Bi-1/2(Na, K)(1/2)TiO3: effects of formulation on texture development. J Am Ceram Soc 86:1132–1137

    Article  Google Scholar 

  15. Noudem JG, Porcar L, Belmont O, Bourgault D, Barbut JM, Beille J, Tixador P, Barrault M, Tournier R (1997) Study of the superconducting transition at high pulsed current of bulk Bi-2223 sintered and textured by hot forging. Phys C 281:339–344

    Article  Google Scholar 

  16. Caillard R, Garnier V, Desgardin G (2000) Sinter-forging conditions, texture and transport properties of Bi-2212 superconductors. Phys C 340:101–111

    Article  Google Scholar 

  17. Xie RJ, Mitomo M, Kim W, Kim YW, Zhan GD, Akimune Y (2002) Phase transformation and texture in hot-forged or annealed liquid-phase-sintered silicon carbide ceramics. J Am Ceram Soc 85:459–465

    Article  Google Scholar 

  18. Carman A, Pereloma E, Cheng YB (2006) Hot forging of a textured alpha-sialon ceramic. J Am Ceram Soc 89:478–483

    Article  Google Scholar 

  19. Yasuda HY, Noguchi Y, Urnakoshi Y, Takaoka A (2007) Texture control in hydroxyapatite by hot forging. Mater Trans 48:2062–2066

    Article  Google Scholar 

  20. Venet M, Eiras JA, Garcia D (2009) Anisotropic properties in textured lead barium niobate compositions around the morphotropic phase boundary. Solid State Ionics 180:320–325

    Article  Google Scholar 

  21. Sacks MD, Scheiffele GW, Staab GA (1996) Fabrication of textured silicon carbide via seeded anisotropic grain growth. J Am Ceram Soc 79:1611–1616

    Article  Google Scholar 

  22. Xue J-X, Liu J-X, Xie B-H, Zhang G-J (2011) Pressure-induced preferential grain growth, texture development and anisotropic properties of hot pressed hexagonal boron nitride ceramics. Scripta Mater 65(11):966–969

    Article  Google Scholar 

  23. Tani T (2006) Texture engineering of electronic ceramics by the reactive-templated grain growth method. J Ceram Soc Jpn 114:363–370

    Article  Google Scholar 

  24. Alkoy S, Duran C, Hall DA (2008) Electrical properties of textured potassium strontium niobate (KSr2Nb5O15) ceramics fabricated by reactive templated grain growth. J Am Ceram Soc 91:1597–1602

    Article  Google Scholar 

  25. Brooks KG, Klissurska RD, Moeckli P, Setter N (1997) Influence of texture on the switching behavior of Pb(Zr0.70Ti0.30)O-3 sol-gel derived thin films. J Mater Res 12:531–540

    Article  Google Scholar 

  26. Jones JL, Slamovich EB, Bowman KJ (2005) Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction. J Appl Phys 97:024115

    Article  Google Scholar 

  27. Jones JL, Hoffman M, Bowman KJ (2005) Saturated domain switching textures and strains in ferroelastic ceramics. J Appl Phys 98:024115

    Article  Google Scholar 

  28. Sakashita T, Chazono H, Pezzotti G (2007) Quantitative analysis of domain texture in polycrystalline barium titanate by polarized Raman microprobe spectroscopy. J Appl Phys 102(12):124106

    Article  Google Scholar 

  29. Ma YC, Bowman KJ (1991) Texture in hot-pressed or forged alumina. J Am Ceram Soc 74:2941–2944

    Article  Google Scholar 

  30. Brandon D, Chen DZ, Chan HL (1995) Control of texture in monolithic Alumina. Mater Sci Eng A 195:189–196

    Article  Google Scholar 

  31. Suzuki TS, Uchikoshi T, Sakka Y (2006) Control of texture in alumina by colloidal processing in a strong magnetic field. Sci Tech Adv Mater 7:356–364

    Article  Google Scholar 

  32. Lee FJ, Bowman KJ (1992) Texture and anisotropy in silicon nitride. J Am Ceram Soc 75:1748–1755

    Article  Google Scholar 

  33. Lee FJ, Bowman KJ (1994) Texture development via grain rotation in a beta-silicon nitride. J Am Ceram Soc 77:947–953

    Article  Google Scholar 

  34. Li SQ, Sassa K, Asai S (2004) Fabrication of textured Si3N4 ceramics by slip casting in a high magnetic field. J Am Ceram Soc 87:1384–1387

    Article  Google Scholar 

  35. Zhu X, Sakka Y (2008) Textured silicon nitride: processing and anisotropic properties. Sci Tech Adv Mater 9(3):033001

    Article  Google Scholar 

  36. Goyal A, Funkenbusch PD, Kroeger DM, Burns SJ (1991) Fabrication of highly aligned YBa2Cu3O7-delta-Ag melt- textured composites. Phys C 182:203–218

    Article  Google Scholar 

  37. Lee FJ, Sandlin MS, Bowman KJ (1993) Toughness anisotropy in textured ceramic composites. J Am Ceram Soc 76:1793–1800

    Article  Google Scholar 

  38. Guilmeau E, Funahashi R, Mikami M, Chong K, Chateigner D (2004) Thermoelectric properties-texture relationship in highly oriented Ca3Co4O9 composites. Appl Phys Lett 85:1490–1492

    Article  Google Scholar 

  39. Wang F, Zhang K, Wang G (2008) Texture in superplastically deformed alumina-zirconia composites. Mater Sci Eng A 491:476–482

    Article  Google Scholar 

  40. Uchikoshi T, Suzuki TS, Okuyama H, Sakka Y (2004) Control of crystalline texture in polycrystalline alumina ceramics by electrophoretic deposition in a strong magnetic field. J Mater Res 19:1487–1491

    Article  Google Scholar 

  41. Wei M, Zhi D, Brandon DG (2005) Microstructure and texture evolution in gel-cast alpha-alumina/alumina platelet ceramic composites. Scripta Mater 53:1327–1332

    Article  Google Scholar 

  42. Ruppi S (2008) Enhanced performance of alpha-Al2O3 coatings by control of crystal orientation. Surf Coat Tech 202:4257–4269

    Article  Google Scholar 

  43. Ma YC, Bowman KJ (1991) Texture in hot pressed or forged alumina. J Am Ceram Soc 74:2941–2944

    Article  Google Scholar 

  44. Bowman KJ, Chen IW (1993) Transformation textures in zirconia. J Am Ceram Soc 76:113–122

    Article  Google Scholar 

  45. Bowman KJ, Miller P, Guo Z, Roeder R, Trumble KP (1997) Texture and anisotropy correlations in ceramic composites. Minerals, Metals & Materials Society, pp 1169–1175

    Google Scholar 

  46. Sandlin MS, Lee EJ, Bowman KJ (1992) Simple geometric model for assessing whisker orientation in axisymmetrical SiC-Whisker-reinforced composites. J Am Ceram Soc 75:1522–1528

    Article  Google Scholar 

  47. Sandlin MS, Bowman KJ (1992) Green body processing effects on silicon carbide whisker textures in alumina matrix composites. Ceram Eng Sci Proc 13:661–668

    Article  Google Scholar 

  48. Sandlin MS, Lee EJ, Bowman KJ (1992) Simple geometric model for assessing whisker orientation in axisymmetrical Sic-Whisker-reinforced composites. J Am Ceram Soc 75:1522–1528

    Article  Google Scholar 

  49. Diot C, Arnault V (1991) Orientation anisotropy in sic matrix of unidirectional sic sic composite. Textures and Microstruct 14:389–395

    Article  Google Scholar 

  50. Ma YC, Lee FJ, Bowman KJ (1994) Deformation textures in hot-worked polyphase ceramics. Mater Sci Eng Struct Mater Prop Microstruct Process 175:167–176

    Google Scholar 

  51. Borrego A, Fernandez R, Cristina MD, Ibanez J, Gonzalez-Doncel G (2002) Influence of extrusion temperature on the microstructure and the texture of 6061Al-15 vol. % SICwPM composites. Compos Sci Tech 62:731–742

    Article  Google Scholar 

  52. Bunge HJ (1991) Textures in nonmetallic materials. Textures and Microstruct 14:283–326

    Article  Google Scholar 

  53. Desgardin G, Monot I, Raveau B (1999) Texturing of high-Tc superconductors. Supercond Sci Technol 12:115–133

    Article  Google Scholar 

  54. Specht ED, Goyal A, Lee DF, List FA, Kroeger DM, Paranthaman M, Williams RK, Christen DK (1998) Cube-textured nickel substrates for high-temperature superconductors. Supercond Sci Technol 11:945–949

    Article  Google Scholar 

  55. He Q, Christen DK, Budai JD, Specht ED, Lee DF, Goyal A, Norton DP, Paranthaman M, List FA, Kroeger DM (1997) Deposition of biaxially-oriented metal and oxide buffer-layer films on textured Ni tapes: new substrates for high-current, high-temperature superconductors. Phys C 275:155–161

    Article  Google Scholar 

  56. Goyal A, Paranthaman MP, Schoop U (2004) The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull 29:552–561

    Article  Google Scholar 

  57. Lee DF, Partsinevelos CS, Presswood RG, Salama K (1994) Melt texturing of preferentially aligned YBA2CU3OX superconductor by a Seeded directional solidification method. J Appl Phys 76:603–605

    Article  Google Scholar 

  58. Salama K, Lee DF (1994) Progress in melt texturing of YBA2CU3OX superconductor. Supercond Sci Technol 7:177–193

    Article  Google Scholar 

  59. Kocks UF, Tome CN, Wenk HR (1998) Texture and anisotropy: preferred orientations in polycrystals and their effects on materials properties. Cambridge University, Cambridge

    Google Scholar 

  60. Wenk H, van Houtte P (2004) Texture and anisotropy. Rep Prog Phys 67:1367

    Article  Google Scholar 

  61. Hermans JJ, Hermans PH, Vermaas D, Weidinger A (1946) Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recl Trav Chim Pays-Bas-J Roy Neth Chem Soc 65:427–447

    Article  Google Scholar 

  62. Stein RS (1958) The X-ray diffraction, birefringence, and infrared dichroism of stretched polyethylene. 2. Generalized uniaxial crystal orientation. J Polymer Sci 31:327–334

    Article  Google Scholar 

  63. Bartczak Z, Argon AS, Cohen RE (1992) Deformation mechanisms and plastic resistance in Single-Crystal-Textures high density polyethylene. Macromolecules 25:5036–5053

    Article  Google Scholar 

  64. Lin L, Argon AS (1994) Structure and plastic-deformation of polyethylene. J Mater Sci 29:294–323

    Article  Google Scholar 

  65. Krause SJ, Hosford WF (1989) Texture and development in polyethylene. 1. uniaxial extension and uniaxial compression. J Polymer Sci B 27:1853–1865

    Article  Google Scholar 

  66. Bartczak Z, Argon AS, Cohen RE (1994) Texture evolution in large strain simple shear deformation of high density ployethylene. Polymer 35:3427–3441

    Article  Google Scholar 

  67. Pazur RJ, Prudhomme RE (1994) An X-Ray pole figure analysis on bi-axially deformed polyethylene film. J. Poly Sci B 32:1475–1484

    Article  Google Scholar 

  68. Bowden PB, Young RJ (1974) Deformation mechanisms in crytalline polymers. J Mater Sci 9:2034–2051

    Article  Google Scholar 

  69. Parks DM, Ahzi S (1990) Polycrytalline plastic deformation and texture evolution for crystals lacking 5 independent slip systems. J Mech Phys Solids 38:701–724

    Article  Google Scholar 

  70. Ahzi S, Parks DM, Argon AS (1991) Modeling of deformation textures evolution in semicrytalline ploymers. Textures Microstruct 14:1141–1146

    Article  Google Scholar 

  71. Nikolov S, Lebensohn RA, Raabe D (2006) Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers. J Mech Phys Solids 54:1350–1375

    Article  Google Scholar 

  72. Ahzi S, Ganesan A, Arruda E (2002) Modeling and simulation of deformation texture in semi-crystalline polymers: application to polypropylene and nylon-6. Textures Mater (Pts 1 and 2)

    Google Scholar 

  73. Lee BJ, Parks DM, Ahzi S (1993) Micromechanical modeling of large plastic deformation and texture evolution in semicrystalline polymers. J Mech Phys Solids 41:1651–1687

    Article  Google Scholar 

  74. Ahzi S, Lee BJ, Asaro RJ (1994) Plasticity and anisotropy evolution in crystalline ploymers. Mater Sci Eng, A 189:35–44

    Article  Google Scholar 

  75. Li D, Garmestani H, Kalidindi SR, Alamo R (2001) Crystallographic texture evolution in high-density polyethylene during uniaxial tension. Polymer 42:4903–4913

    Article  Google Scholar 

  76. Li DS, Garmestani H, Alamo RG, Kalidindi SR (2003) The role of crystallinity in the crystallographic texture evolution of polyethylenes during tensile deformation. Polymer 44:5355–5367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Suwas, S., Ray, R.K. (2014). Textures of Non-metals. In: Crystallographic Texture of Materials. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-6314-5_8

Download citation

Publish with us

Policies and ethics