Skip to main content

Deformation Textures

  • Chapter
  • First Online:
Crystallographic Texture of Materials

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

As a result of plastic deformation of a material, there is a change in shape of the constituent grains and the total grain boundary area increases substantially. The mechanism of deformation leads to continuous generation of dislocation, which aids to increase the grain boundary area. This leads to the appearance of internal structure within the grains. Further, the orientations of single crystals and of individual grains of a polycrystalline material change relative to the directions of the applied stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mecif A, Bacroix B, Franciosi P (1997) Temperature and orientation dependent plasticity features of Cu and Al single crystals under axial compression. 1. Lattice rotation effects and true hardening stages. Acta Mater 45:371–381

    Article  Google Scholar 

  2. Arzaghi M, Beausir B, Tóth LS (2009) Contribution of non-octahedral slip to texture evolution of fcc polycrystals in simple shear. Acta Mater 57:2440–2453

    Article  Google Scholar 

  3. Yeung WY (1990) Non-octahedral deformation activity in cold-rolled 70: 30 brass and its influence on the development of brass texture. Acta Metall 38:1109–1114

    Article  Google Scholar 

  4. Argon AS (2008) Strengthening mechanisms in crystal plasticity. Oxford University Press, Oxford

    Google Scholar 

  5. Reed-Hill RE (1973) Physical metallurgy principles, 2nd edn. University Series in Basic Engineering. Van Nostrand

    Google Scholar 

  6. Barrett C, Massalski T (1980) Structure of metals. Pergamon Press, New York

    Google Scholar 

  7. Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley Publishing Co., Reading

    Google Scholar 

  8. Vieira MF, Fernandes JV (1999) Complex strain paths in polycrystalline copper: microstructural aspects. Mater Res 2:185–189

    Article  Google Scholar 

  9. Hirsch J, Lücke K, Hatherly M (1988) Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals. III. The influence of slip inhomogeneities and twinning. Acta Metall 36:2905–2927

    Article  Google Scholar 

  10. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford

    Google Scholar 

  11. Malin A, Huber J, Hatherly M (1981) The microstructure of rolled copper single crystals. Z Metallkd 72:310–317

    Google Scholar 

  12. Liu Q, Hansen N (1995) Deformation microstructure and orientation of f.c.c. crystals. Phys Stat Solidi (a) 149:187–199

    Google Scholar 

  13. Suwas S, Ray RK, Singh AK, Bhargava S (1999) Evolution of hot rolling textures in a two-phase (α2+β) Ti3Al base alloy. Acta Mater 47:4585–4598

    Article  Google Scholar 

  14. Lee W, Duggan B (1983) Anneal hardening in α-brass. Met Tech 10:85–88

    Article  Google Scholar 

  15. Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273

    Article  Google Scholar 

  16. Sevillano JG, Vanhoutte P, Aernoudt E (1980) Large strain work-hardening and textures. Prog Mater Sci 25:69–412

    Article  Google Scholar 

  17. Luft A (1991) Microstructural processes of plastic instabilities in strengthened metals. Prog Mater Sci 35:97–204

    Article  Google Scholar 

  18. Bay B, Hansen N, Kuhlmann-Wilsdorf D (1992) Microstructural evolution in rolled aluminium. Mater Sci Eng A 158:139–146

    Article  Google Scholar 

  19. Ray RK, Hutchinson WB, Duggan BJ (1975) Study of nucleation of recrystallization using HVEM. Acta Metall 23:831–840

    Article  Google Scholar 

  20. Leffers T, Grum-Jensen A (1968) Development of rolling texture in copper and brass. Trans Am Inst Min Metall Pet Eng 242:314–319

    Google Scholar 

  21. Haldar A, Ray RK (2005) Microstructural and textural development in an extra low carbon steel during warm rolling. Mater Sci Eng A 391:402–407

    Article  Google Scholar 

  22. Inagaki H (1990) Development of microstructures and textures during cold rolling of polycrystalline iron containing an excess amount of dissolved carbon. Z Metallkd 81:474–483

    Google Scholar 

  23. Chun Y, Yu S, Semiatin S, Hwang S (2005) Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP–titanium. Mater Sci Eng A 398:209–219

    Article  Google Scholar 

  24. Bozzolo N, Dewobroto N, Wenk H, Wagner F (2007) Microstructure and microtexture of highly cold-rolled commercially pure titanium. J Mater Sci 42:2405–2416

    Article  Google Scholar 

  25. Malin A, Carmichael C (1985) Hot rolling of Zinc. Metals, materials, manufacturing: proceedings of the 1985 metals congress

    Google Scholar 

  26. Kamijo T, Fujiwara A, Yoneda Y, Fukutomi H (1991) Formation of cube texture in copper single crystals. Acta Metall 39:1947–1952

    Article  Google Scholar 

  27. Bauer RE, Mecking H, Lücke K (1977) Textures of copper single crystals after rolling at room temperature. Mater Sci Eng 27:163–180

    Article  Google Scholar 

  28. Köhlhoff GD, Malin AS, Lücke K, Hatherly M (1988) Microstructure and texture of rolled (112)(111) copper single crystals. Acta Metall 36:2841–2847

    Article  Google Scholar 

  29. Kamijo T, Adachihara H, Fukutomi H (1993) Formation of a (001)[100] deformation structure in aluminum single crystals of an S-orientation. Acta Metall 41:975–985

    Article  Google Scholar 

  30. Ferry M, Humphreys FJ (2006) Onset of abnormal subgrain growth in cold rolled {110} á001ñ oriented copper single crystals. Mater Sci Eng A 435–436:447–452

    Article  Google Scholar 

  31. Verbraak CA, Slakhorst JWHG (1974) Development of the texture of (112) [−1−11] rolled aluminum, copper, and silver. Scripta Metall 8:217–221

    Article  Google Scholar 

  32. Hu H, Cline RS, Goodman SR (1966) Deformation textures of metals. pp 295–367

    Google Scholar 

  33. Brick RM, Williamson MA (1941) Deformation and recrystallization of copper and brass. Hardness microstructure and texture changes. Trans Am Inst Min Metall Eng, Inst Metals Div Tech Pub, p 8

    Google Scholar 

  34. Hu H, Sperry P, Beck PA (1952) Rolling textures in face-centered cubic metals. J Met 4:76–81

    Google Scholar 

  35. Hirsch J, Lücke K (1988) Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline fcc metals—I. Description of rolling texture development in homogeneous CuZn alloys. Acta Metall 36:2863–2882

    Article  Google Scholar 

  36. Dillamore IL, Roberts WT (1964) Rolling textures in FCC and BCC metals. Acta Metall 12:281–293

    Article  Google Scholar 

  37. Ray RK (1995) Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys. Acta Metall 43:3861–3872

    Article  Google Scholar 

  38. Haessner F (1963) The conditions for the occurrence of the copper- and brass-type texture in rolled face-centered cubic metals. Z Metallkd 54:79–85

    Google Scholar 

  39. Goodman SR, Hu H (1964) Texture transition in austenitic stainless steels. Trans Am Inst Min Metall Pet Eng 230:1413–1419

    Google Scholar 

  40. Bouysset C, Coulomb P (1968) Rolling textures of nickel–chromium alloys. Mem Sci Rev Met 65:887–896

    Google Scholar 

  41. Hu H, Goodman SR (1963) Texture transition in copper. Trans Am Inst Min Metall Pet Eng 227:627–639

    Google Scholar 

  42. Hu H, Cline RS, Goodman SR (1961) Texture transition in high-purity silver and its correlation with stacking-fault frequency. J Appl Phys 32:1392–1396

    Article  Google Scholar 

  43. Hu H, Cline RS (1961) Temperature dependence of rolling textures in high-purity silver. J Appl Phys 32:760–763

    Article  Google Scholar 

  44. Leffers T (1968) Deformation rate dependence of rolling texture in brass containing 5 % zinc. Scripta Metall 2:447–452

    Article  Google Scholar 

  45. Wassermann G (1963) The effect of mechanical twinning on the formation of rolling textures in face-centered-cubic metals. Z Metallkd 54:61–65

    Google Scholar 

  46. Haessner F (1963) Theory of the rolling structure of face-centered cubic metals. Z Metallkd 54:98–111

    Google Scholar 

  47. Smallman RE, Green D (1964) Dependence of rolling texture on stacking-fault energy. Acta Metall 12:145–154

    Article  Google Scholar 

  48. Liu YC (1964) Interpretation of flow mechanisms during rolling in f.c.c. [face-centered cubic] metals. Trans Am Inst Min Metall Pet Eng 230:656–667

    Google Scholar 

  49. Christoffersen H, Leffers T (1997) Microstructure and composite deformation pattern for rolled brass. Scripta Mater 37:1429–1434

    Article  Google Scholar 

  50. Leffers T (1968) Computer simulation of the plastic deformation in face centred cubic polycrystals and the rolling texture derived. Phys Stat Solidi (b) 25:337–344

    Article  Google Scholar 

  51. Carstensen JV, Ray RK, Leffers T (2002) Texture development in Ni–Co alloys rolled to moderate reductions. In: Lee DN (ed) Textures of Materials, Pts 1 and 2

    Google Scholar 

  52. Gryziecki J, Truszkowski W, Pospiech J, Jura J (1991) Development of texture and microstructure during rolling of the copper—8 wt pct germanium alloy. Textures Microstruct 14:1061–1066

    Article  Google Scholar 

  53. Engler O (2000) Deformation and texture of copper-manganese alloys. Acta Mater 48:4827–4840

    Article  Google Scholar 

  54. Chowdhury SG, Ray RK, Jena AK (1995) Development of cold-rolling texture in Ni3Al(B). Scripta Metall 32:213–218

    Article  Google Scholar 

  55. Chowdhury SG, Ray RK, Jena AK (1998) Rolling texture in the intermetallic compound Ni76Al24(B). Mater Sci Eng A 246:289–301

    Article  Google Scholar 

  56. Bhattacharya B, Ray RK (2000) Deformation behavior of a Ni3Al(B, Zr) alloy during cold rolling: part II. Microstructural and textural changes. Metall Mater Trans A 31:3011–3021

    Article  Google Scholar 

  57. Leffers T, Kayworth P (1973) Twinning and texture. pp 149–171

    Google Scholar 

  58. Leffers T, Bilde-Sørensen JB (1990) Intra- and inter-granular heterogeneities in the plastic deformation of brass during rolling. Acta Metall 38:1917–1926

    Article  Google Scholar 

  59. Leffers T (1969) A modified cross-slip theory for the rolling texture of face-centered cubic metals and alloys. In: Grewen J, Wassermann G (eds) Textures in research and practice. Springer, Berlin, pp 120–129

    Google Scholar 

  60. Mishra S, Därmann C (1982) Role and control of texture in deep-drawing steels. Inter Mater Rev 27:307–320

    Article  Google Scholar 

  61. Gilormini P (1989) The theory of rate sensitive pencil glide application to rolling textures. Acta Metall 37:2093–2101

    Article  Google Scholar 

  62. Tóth LS, Jonas JJ, Daniel D, Ray RK (1990) Development of ferrite rolling textures in low-carbon and extra low-carbon steels. Metall Mater Trans A 21:2985–3000

    Article  Google Scholar 

  63. Ray RK, Jonas JJ (1990) Transformation textures in steels. Inter Mater Rev 35:1–36

    Article  Google Scholar 

  64. Urabe T, Jonas JJ (1994) Modeling texture change during the recrystallization of an IF steel. ISIJ Int 34:435–442

    Article  Google Scholar 

  65. Raabe D, Lücke K (1994) Rolling textures of niobium and molybdenum. Z Metallkd 85:302–306

    Google Scholar 

  66. Semchyshen M, Timmons GA (1952) Preferred orientation of arc-cast molybdenum sheet. Trans Am Inst Min Met Eng 194:279–286

    Google Scholar 

  67. Raabe D, Schlenkert G, Weisshaupt H, Lücke K (1994) Texture and microstructure of rolled and annealed tantalum. Mater Sci Tech 10:299–305

    Article  Google Scholar 

  68. Wassermann G, Grewen J (1962) Texturen metallischer Werkstoffe, 2nd edn. Springer, Berlin

    Google Scholar 

  69. Inoue H, Fukushima S, Inakazu N (1992) Transformation textures in Ti–15V–3Cr–3Sn–3Al alloy sheets. Mater Trans JIM 33:129–137

    Article  Google Scholar 

  70. Khadkikar PS, Michal GM, Vedula K (1990) Preferred orientations in extruded nickel and iron aluminides. Metall Mater Trans A 21:279–288

    Article  Google Scholar 

  71. Bowman RR, Noebe RD, Raj SV, Locci IE (1992) Correlation of deformation mechanisms with the tensile and compressive behavior of NiAl and NiAl(Zr) intermetallic alloys. Metall Mater Trans A 23:1493–1508

    Article  Google Scholar 

  72. Bowman KJ, Jenny J, Kim S, Noebe RD (1993) Texture in hot-worked B2-structure aluminides. Mater Sci Eng A 160:201–208

    Article  Google Scholar 

  73. Fundenberger JJ, Philippe MJ, Wagner F, Esling C (1997) Modelling and prediction of mechanical properties for materials with hexagonal symmetry (zinc, titanium and zirconium alloys). Acta Mater 45:4041–4055

    Google Scholar 

  74. Suwas S, Ray RK (2000) Evolution of texture in the beta(B2) phase of a two phase titanium aluminide intermetallic alloy Ti–24Al–11Nb. Metall Mater Trans A 31:2339–2350

    Article  Google Scholar 

  75. Ray RK, Jonas JJ, Hook RE (1994) Cold rolling and annealing textures in low carbon and extra low carbon steels. Inter Mater Rev 39:129–172

    Article  Google Scholar 

  76. Welch PI, Davies GJ (1983) Texture and cleavage in molybdenum. Textures Microstruct 6:21–37

    Article  Google Scholar 

  77. Pugh JW (1958) The temperature dependence of preferred orientation in rolled tungsten. Trans Am Inst Min Metall Pet Eng 212:637–642

    Google Scholar 

  78. Wang Y, Huang J (2003) Texture analysis in hexagonal materials. Mater Chem Phys 81:11–26

    Google Scholar 

  79. Kocks UF, Tome CN, Wenk HR (1998) Texture and anisotropy: preferred orientations in polycrystals and their effects on materials properties. Cambridge University Press, Cambridge

    Google Scholar 

  80. Barrett CS (1952) Structure of metals. Crystallographic methods, principles and data. McGraw-Hill Book Co., New York

    Google Scholar 

  81. McHargue C, Jetter L, Ogle J (1959) Preferred orientation in extruded aluminum rod. Trans Am Inst Min Met Eng 215:831–837

    Google Scholar 

  82. Montheillet F, Gilormini P, Jonas J (1985) Relation between axial stresses and texture development during torsion testing: a simplified theory. Acta Metall 33:705–717

    Article  Google Scholar 

  83. Beausir B, Tóth LS, Neale KW (2007) Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear. Acta Mater 55:2695–2705

    Article  Google Scholar 

  84. Sachs G (1928) Zur Ableitung einer Fliessbedingung. Z Verein Deut Ing 72:769–774

    Google Scholar 

  85. Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324

    Google Scholar 

  86. Bishop JFW, Hill R (1951) A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Phil Mag 42:414–427

    Google Scholar 

  87. Kocks UF, Canova GR (1981) How many slip systems, and which? Risø National Lab

    Google Scholar 

  88. Honneff H, Mecking H (1978) A method for the determination of the active slip systems and orientation changes during single crystal deformation. In: Gottstein G, Lücke K (eds) 5th international conference on textures of materials. Springer, Berlin

    Google Scholar 

  89. Raabe D (1998) Computational materials science: the simulation of materials microstructure and properties. Wiley-VCH, Weiheim

    Book  Google Scholar 

  90. van Houtte P, Delannay L, Kalidindi SR (2002) Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction. Inter J Plast 18:359–377

    Article  Google Scholar 

  91. van Houtte P, Li S, Seefeldt M, Delannay L (2005) Deformation texture prediction: from the Taylor model to the advanced Lamel model. Inter J Plast 21:589–624

    Article  Google Scholar 

  92. Crumbach M, Pomana G, Wagner P, Gottstein G (2001) A Taylor type deformation texture model considering grain interaction and material properties. Part I—Fundamentals. Recrystallization and grain growth. Springer, Berlin

    Google Scholar 

  93. Molinari A, Canova GR, Ahzi S (1987) A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall 35:2983–2994

    Article  Google Scholar 

  94. Lebensohn R, Tomé C (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624

    Article  Google Scholar 

  95. Kalidindi SR, Anand L (1992) An approximate procedure for predicting the evolution of crystallographic texture in bulk deformation processing of FCC metals. Inter J Mech Sci 34:309–329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Suwas, S., Ray, R.K. (2014). Deformation Textures. In: Crystallographic Texture of Materials. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-6314-5_5

Download citation

Publish with us

Policies and ethics