Experimental Determination of Texture

Part of the Engineering Materials and Processes book series (EMP)


The previous chapter describes how texture of a material can be represented in terms of pole figures and ODFs. These methods of representation require the basic orientation data to be obtained from the crystallites or grains, which constitute the material. This chapter will deal with the different experimental techniques that are employed for this purpose.


Pole Figure Diffract Intensity Stereographic Projection Texture Measurement Pole Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, Upper Saddle RiverGoogle Scholar
  2. 2.
    Randle V, Engler O (2000) Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. Gordon & Breach, UKGoogle Scholar
  3. 3.
    Dingley DJ, Babakishi K (1986) Use of electron backscatter diffraction patterns for determination of crystal symmetry elements. Scan Electron Microsc 383–391Google Scholar
  4. 4.
    Dingley DJ (1984) Diffraction from sub-micron areas using electron backscattering in a scanning electron microscope. Scan Electron Microsc 2:569–575Google Scholar
  5. 5.
    Venables JA, Harland CJ (1973) Electron backscattering patterns: new technique for obtaining crystallographic information in scanning electron-microscope. Philos Mag 27:1193–1200CrossRefGoogle Scholar
  6. 6.
    Bacon GE (1975) Neutron-diffraction in Holland. Nature 257:360Google Scholar
  7. 7.
    Szpunar JA (1984) Texture studies using neutron-diffraction. J Mater Sci 19:3467–3476CrossRefGoogle Scholar
  8. 8.
    Bunge HJ (1989) Advantages of neutron diffraction in texture analysis. Textures Microstruct 10:265–307CrossRefGoogle Scholar
  9. 9.
    Szpunar J (1976) Texture and neutron-diffraction. At Energy Rev 14:199–261Google Scholar
  10. 10.
    Matthies S, Pehl J, Wenk HR, Lutterotti L, Vogel SC (2005) Quantitative texture analysis with the HIPPO neutron TOF diffractometer. J Appl Crystallogr 38:462–475CrossRefGoogle Scholar
  11. 11.
    Bourgeois D, Moy JP, Svensson SO, Kvick A (1994) The point spread function of X-ray image-intensifiers CCD-camera and imaging-plate systems in crystallography: assessment and consequences for the dynamic range. J Appl Crystallogr 27:868–877CrossRefGoogle Scholar
  12. 12.
    Mishin OV, Lauridsen EM, Lassen NCK, Bruckner G, Tschentscher T, Bay B, Jensen DJ, Poulsen HF (2000) Application of high-energy synchrotron radiation for texture studies. J Appl Crystallogr 33:364–371CrossRefGoogle Scholar
  13. 13.
    Wenk HR, Grigull S (2003) Synchrotron texture analysis with area detectors. J Appl Crystallogr 36:1040–1049CrossRefGoogle Scholar
  14. 14.
    Bunge HJ, Wcislak L, Klein H, Garbe U, Schneider JR (2003) Texture and microstructure imaging in six dimensions with high-energy synchrotron radiation. J Appl Crystallogr 36:1240–1255CrossRefGoogle Scholar
  15. 15.
    Wever F, Schmid WE (1929) Investigations on the texture of cold-worked metals. Mitt Kaiser-Wilhelm-Inst Eisenforsch Duesseldorf 11:109–122Google Scholar
  16. 16.
    Decker BF, Asp ET, Harker D (1948) Preferred orientation determination using a Geiger counter X-Ray diffraction goniometer. J Appl Phys 19:388–392CrossRefGoogle Scholar
  17. 17.
    Schulz LG (1949) A direct method of determining preferred orientation of a flat reflection sample using a geiger counter X-ray spectrometer. J Appl Phys 20:1030–1032CrossRefGoogle Scholar
  18. 18.
    Schulz LG (1949) Determination of preferred orientation in flat transmission samples using a geiger counter X-ray spectrometer. J Appl Phys 20:1033–1035CrossRefGoogle Scholar
  19. 19.
    Schultz LG (1949) A direct method of determining preferred orientation of a flat reflection sample using a geiger counter X-ray spectrometer. J Appl Phys 20:1030–1032CrossRefGoogle Scholar
  20. 20.
    Hutchinson WB, Hatherly M (1979) An introduction to texture in metals. The Institution of Metallurgist, London (monograph)Google Scholar
  21. 21.
    Montesin T, Heizmann JJ (1991) Evolution of the texture in steelcord. Texture Stress Microstruct 14:573–578CrossRefGoogle Scholar
  22. 22.
    Montesin T, Heizmann JJ, Vadon A (1991) Absorption corrections for X-ray texture measurement of any shape sample. Texture Stress Microstruct 14:567–572CrossRefGoogle Scholar
  23. 23.
    Jensen DJ, Leffers T (1989) Fast texture measurements using a position sensitive detector. Textures Microstruct 10:361–373CrossRefGoogle Scholar
  24. 24.
    Wenk H-R (1994) Texture analysis with TOF neutrons. Trans Am Crystallogr Assoc 29:95–108Google Scholar
  25. 25.
    Feldmann K (1989) Texture investigations by neutron time-of-flight. Textures Microstruct 10:309–323CrossRefGoogle Scholar
  26. 26.
    Kocks UF, Tome CN, Wenk HR (1998) Texture and anisotropy: preferred orientations in polycrystals and their effects on materials properties, 10. Cambridge University, CambridgeGoogle Scholar
  27. 27.
    Skrotzki W, Klöden B, Tamm R, Oertel C-G, Garbe U, Rybacki E (2003) Torsion texture measurements with high-energy synchrotron radiation on NiAl. Textures Microstruct 35:163–173CrossRefGoogle Scholar
  28. 28.
    Anderson A, Thompson R, Bolingbroke R, Root J (1996) Ultrasonic characterization of rolling and recrystallization texture in aluminium. Textures Microstruct 26:39–58CrossRefGoogle Scholar
  29. 29.
    Spies M, Schneider E (1990) Nondestructive analysis of textures in rolled sheets by ultrasonic techniques. Textures Microstruct 12:219–231CrossRefGoogle Scholar
  30. 30.
    Hough PVC (1959) Machine analysis of bubble chamber pictures. In: International conference on high energy accelerators and instrumentation, 1959Google Scholar
  31. 31.
    Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15:11–15CrossRefGoogle Scholar
  32. 32.
    Schwartz AJ (2009) Electron backscatter diffraction in materials science. Springer, BerlinGoogle Scholar
  33. 33.
    Field DP (1997) Recent advances in the application of orientation imaging. Ultramicroscopy 67:1–9CrossRefGoogle Scholar
  34. 34.
    Dingley DJ, Randle V (1992) Microtexture determination by electron back scatter diffraction. J Mater Sci 27:4545–4566CrossRefGoogle Scholar
  35. 35.
    Schwarzer RA (1993) The determination of local texture by electron-diffraction: a tutorial review. Textures Microstruct 20:7–27CrossRefGoogle Scholar
  36. 36.
    Zaefferer S, Schwarzer RA (1994) Automated measurement of single grain orientations in the TEM. Z Metall 85:585–591Google Scholar
  37. 37.
    Schwarzer RA, Sukkau J (1998) Automated crystal orientation mapping (ACOM) with a computer-controlled TEM by interpreting transmission Kikuchi patterns. International Conference on Texture and Anisotropy of Polycrystals. Mater Sci Forum 273:215–222Google Scholar
  38. 38.
    Schwarzer RA (1999) Advancements of ACOM and applications to orientation stereology. In: National Research Council of Canada, 1999, pp 52–61Google Scholar
  39. 39.
    Humphreys FJ (1983) The determination of crystallographic textures from the selected areas of a specimen by electron diffraction. Textures Microstruct 6:45–61CrossRefGoogle Scholar
  40. 40.
    Wright SI, Dingley DJ (1998) Orientation imaging in the transmission electron microscope. International conference on Texture and Anisotropy of Polycrystals. Mater Sci Forum 273:209–214Google Scholar
  41. 41.
    Wu G, Zaefferer S (2009) Advances in TEM orientation microscopy by combination of dark-field conical scanning and improved image matching. Ultramicroscopy 109:1317–1325CrossRefGoogle Scholar
  42. 42.
    Rauch EF, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P (2010) Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristall 225:103–109CrossRefGoogle Scholar
  43. 43.
    Otte HM, Dash J, Schaake HF (1964) Electron microscopy and diffraction of thin films: interpretation and correlation of images and diffraction patterns. Phy Stat Solidi 5:527–549Google Scholar
  44. 44.
    Edington JW (1976) Practical electron microscopy in materials science. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  45. 45.
    Fundenberger JJ, Morawiec A, Bouzy E, Lecomte JS (2003) System for creating orientation maps using TEM. Mater Chem Phys 81:535–537Google Scholar
  46. 46.
    Zaefferer S (2002) Computer-aided crystallographic analysis in the TEM. Adv Imaging Electron Phys 125(125):355–415Google Scholar
  47. 47.
    Fundenberger JJ, Bouzy E, Morawiec A, Lecomte JS (2002) Orientation maps on TEM. 13th International Conference on Textures of Materials. Mater Sci Forum 408:209–214Google Scholar
  48. 48.
    Fundenberger JJ, Morawiec A, Bouzy E, Lecomte JS (2003) Polycrystal orientation maps from TEM. Ultramicroscopy 96:127–137CrossRefGoogle Scholar
  49. 49.
    Fundenberger JJ, Morawiec A, Bouzy E (2005) Advances in automatic TEM based orientation mapping. 2nd International Conference on Texture and Anisotropy of Polycrystals. Solid state phenom 105:37–42Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Research and DevlopementTata Iron and Steel Co. Ltd.JamshedpurIndia

Personalised recommendations