Skip to main content

Neuroimmune Effects of Developmental TCE Exposure

  • Chapter
  • First Online:
Trichloroethylene: Toxicity and Health Risks

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Exposure to certain chemical, biological or physiological risk factors prior to adulthood can alter developmental processes and may in some instances enhance disease risk. This chapter will concentrate on the known effects of exposure to trichloroethylene (TCE) during gestation, lactation, and/or early life on the brain and immune system and discuss how this persistent environmental pollutant may impede immunologic and neurologic development to promote developmental pathology. Possible neuroimmune mechanisms and therapeutic interventions to circumvent the neurotoxic and adverse neurobehavioral effects of developmental TCE exposure are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.T.S.D.R.U.S. Department of Health and Human Services: Center for Disease Control, Atlanta, Georgia. Agency for Toxic Substances and Disease Registry (1995) Toxicological profile for trichloroethylene. Update Draft for Public Comments. Ref Type: Report.

    Google Scholar 

  • Abe M, Kimoto H, Eto R et al (2010) Postnatal development of neurons, interneurons and glial cells in the substantia nigra of mice. Cell Mol Neurobiol 30:917–928

    Article  CAS  PubMed  Google Scholar 

  • Adgate JL, Eberly LE, Stroebel C et al (2004) Personal, indoor, and outdoor VOC exposures in a probability sample of children. J Expo Anal Environ Epidemiol 14(Suppl 1):S4–S13

    Article  CAS  PubMed  Google Scholar 

  • Altmann L, Welge P, Mensing T et al (2002) Chronic exposure to trichloroethylene affects neuronal plasticity in rat hippocampal slices. Environ Toxicol Pharmacol 12:157–167

    Article  CAS  PubMed  Google Scholar 

  • Anderson G, Maes M (2013) Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 42:5–19

    Article  CAS  PubMed  Google Scholar 

  • Ashwood P, Wakefield AJ (2006) Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol 173:126–134

    Article  CAS  PubMed  Google Scholar 

  • Atladottir HO, Henriksen TB, Schendel DE et al (2012) Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics 130:e1447–e1454

    Article  PubMed  Google Scholar 

  • Balu DT, Hodes GE, Anderson BT et al (2009) Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharmacology 34:1764–1773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baruch K, Schwartz M (2013) CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun

    Google Scholar 

  • Baruch K, Ron-Harel N, Gal H et al (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A 110:2264–2269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bauman MD, Iosif AM, Ashwood P et al (2013) Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry 3:e278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bayer SA, Altman J, Russo RJ et al (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14:83–144

    CAS  PubMed  Google Scholar 

  • Beamer PI, Luik CE, Abrell L et al (2012) Correction to concentration of trichloroethylene in breast milk and household water from Nogales. Arizona Environ Sci Technol 46:11483

    Article  CAS  Google Scholar 

  • Biswas S, Chida AS, Rahman I (2006) Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 71:551–564

    Article  CAS  PubMed  Google Scholar 

  • Bito LZ (1969) Blood-brain barrier: evidence for active cation transport between blood and the extraceliular fluid of brain. Science 165:81–83

    Article  CAS  PubMed  Google Scholar 

  • Blossom SJ, Doss JC (2007) Trichloroethylene alters central and peripheral immune function in autoimmune-prone MRL++ mice following continuous developmental and early life exposure. J Immunotoxicol 4:129–141

    Article  CAS  PubMed  Google Scholar 

  • Blossom SJ, Pumford NR, Gilbert KM (2004) Activation and attenuation of apoptosis of CD4(+) T cells following in vivo exposure to two common environmental toxicants, trichloroacetaldehyde hydrate and trichloroacetic acid. J Autoimmun 23:211–220

    Article  CAS  PubMed  Google Scholar 

  • Blossom SJ, Doss JC, Gilbert KM (2007) Chronic exposure to a trichloroethylene metabolite in autoimmune-prone MRL+/+ mice promotes immune modulation and alopecia. Toxicol Sci 95:401–411

    Article  CAS  PubMed  Google Scholar 

  • Blossom SJ, Doss JC, Hennings LJ et al (2008) Developmental exposure to trichloroethylene promotes CD4(+) T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice. Toxicol Appl Pharmacol

    Google Scholar 

  • Blossom SJ, Melnyk S, Cooney CA et al (2012) Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus. Neurotoxicology 33:1518–1527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blossom SJ, Cooney CA, Melnyk SB et al (2013) Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally. Toxicol Appl Pharmacol 269:263–269

    Article  CAS  PubMed  Google Scholar 

  • Bogin B (ed) (1999) Patterns of human growth, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Brady ML, Allan AM, Caldwell KK (2012) A limited access mouse model of prenatal alcohol exposure that produces long-lasting deficits in hippocampal-dependent learning and memory. Alcohol Clin Exp Res 36:457–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Branchi I, Karpova NN, D’Andrea I et al (2011) Epigenetic modifications induced by early enrichment are associated with changes in timing of induction of BDNF expression. Neurosci Lett 495:168–172

    Article  CAS  PubMed  Google Scholar 

  • Braunschweig D, Krakowiak P, Duncanson P et al (2013) Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3:e277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bringmann G, Hille A (1990) Endogenous alkaloids in man, VII: 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline–a potential chloral-derived indol alkaloid in man. Arch Pharm (Weinheim) 323:567–569

    Article  CAS  Google Scholar 

  • Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50

    Article  CAS  PubMed  Google Scholar 

  • Chestnut BA, Chang Q, Price A et al (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiu WA, Caldwell JC, Keshava N et al (2006) Key scientific issues in the health risk assessment of trichloroethylene. Environ Health Perspect 114:1445–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colebatch AN, Edwards CJ (2011) The influence of early life factors on the risk of developing rheumatoid arthritis. Clin Exp Immunol 163:11–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conaway CC, Jiao D, Kelloff GJ et al (1998) Chemopreventive potential of fumaric acid, N-acetylcysteine, N-(4-hydroxyphenyl) retinamide and beta-carotene for tobacco-nitrosamine-induced lung tumors in A/J mice. Cancer Lett 124:85–93

    Article  CAS  PubMed  Google Scholar 

  • Dietert RR (2008) Developmental immunotoxicology (DIT): windows of vulnerability, immune dysfunction and safety assessment. J Immunotoxicol 5:401–412

    Article  PubMed  Google Scholar 

  • Dietert RR, Piepenbrink MS (2006) Perinatal immunotoxicity: why adult exposure assessment fails to predict risk. Environ Health Perspect 114:477–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dumas TC (2005) Late postnatal maturation of excitatory synaptic transmission permits adult-like expression of hippocampal-dependent behaviors. Hippocampus 15:562–578

    Article  CAS  PubMed  Google Scholar 

  • Dumas TC, Foster TC (1998) GABA(b) receptors differentially regulate hippocampal CA1 excitatory synaptic transmission across postnatal development in the rat. Neurosci Lett 248:138–140

    Article  CAS  PubMed  Google Scholar 

  • Fetal Growth and Development (2010) Williams obstetrics, vol 23. McGraw-Hill, New York

    Google Scholar 

  • Filosto S, Castillo S, Danielson A et al (2011) Neutral sphingomyelinase 2: a novel target in cigarette smoke-induced apoptosis and lung injury. Am J Respir Cell Mol Biol 44:350–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher J, Mahle D, Bankston L et al (1997) Lactational transfer of volatile chemicals in breast milk. Am Ind Hyg Assoc J 58:425–431

    Article  CAS  PubMed  Google Scholar 

  • Forand SP, Lewis-Michl EL, Gomez MI (2012) Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York State. Environ Health Perspect 120:616–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fox E, Amaral D, Van de Water J (2012) Maternal and fetal antibrain antibodies in development and disease. Dev Neurobiol 72:1327–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchikami M, Morinobu S, Segawa M et al (2011) DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6:e23881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gist GL, Burg JR (1995) Trichloroethylene–a review of the literature from a health effects perspective. Toxicol Ind Health 11:253–307

    Article  CAS  PubMed  Google Scholar 

  • Griffin JM, Blossom SJ, Jackson SK et al (2000a) Trichloroethylene accelerates an autoimmune response by Th1 T cell activation in MRL +/+ mice. Immunopharmacology 46:123–137

    Article  CAS  PubMed  Google Scholar 

  • Griffin JM, Gilbert KM, Lamps LW et al (2000b) CD4(+) T-cell activation and induction of autoimmune hepatitis following trichloroethylene treatment in MRL+/+ mice. Toxicol Sci 57:345–352

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33:191–206

    Article  PubMed Central  PubMed  Google Scholar 

  • Heilmann C, Budtz-Jorgensen E, Nielsen F et al (2010) Serum concentrations of antibodies against vaccine toxoids in children exposed perinatally to immunotoxicants. Environ Health Perspect 118:1434–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodes GE, Hill-Smith TE, Lucki I (2010) Fluoxetine treatment induces dose dependent alterations in depression associated behavior and neural plasticity in female mice. Neurosci Lett 484:12–16

    Article  CAS  PubMed  Google Scholar 

  • Isaacson LG, Spohler SA, Taylor DH (1990) Trichloroethylene affects learning and decreases myelin in the rat hippocampus. Neurotoxicol Teratol 12:375–381

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Martensson J, Stole E et al (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci U S A 88:1913–1917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • James SJ, Cutler P, Melnyk S et al (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617

    CAS  PubMed  Google Scholar 

  • Jones HE, Kunko PM, Robinson SE et al (1996) Developmental consequences of intermittent and continuous prenatal exposure to 1,1,1-trichloroethane in mice. Pharmacol Biochem Behav 55:635–646

    Article  CAS  PubMed  Google Scholar 

  • Kapadia M, Stanojcic M, Earls AM et al (2012) Altered olfactory function in the MRL model of CNS lupus. Behav Brain Res 234:303–311

    Article  PubMed  Google Scholar 

  • Kapczinski F, Frey BN, Andreazza AC et al (2008) Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr 30:243–245

    Article  PubMed  Google Scholar 

  • Khan MF, Kaphalia BS, Prabhakar BS et al (1995) Trichloroethene-induced autoimmune response in female MRL +/+ mice. Toxicol Appl Pharmacol 134:155–160

    Article  CAS  PubMed  Google Scholar 

  • Khandaker GM, Zimbron J, Lewis G et al (2013) Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med 43:239–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kipnis J, Gadani S, Derecki NC (2012) Pro-cognitive properties of T cells. Nat Rev Immunol 12:663–669

    Article  CAS  PubMed  Google Scholar 

  • Langer P (2010) The impacts of organochlorines and other persistent pollutants on thyroid and metabolic health. Front Neuroendocrinol 31:497–518

    Article  CAS  PubMed  Google Scholar 

  • Laslo-Baker D, Barrera M, Knittel-Keren D et al (2004) Child neurodevelopmental outcome and maternal occupational exposure to solvents. Arch Pediatr Adolesc Med 158:956–961

    Article  PubMed  Google Scholar 

  • Lee JY, Hwang GW, Kim MS et al (2012) Methylmercury induces a brain-specific increase in chemokine CCL4 expression in mice. J Toxicol Sci 37:1279–1282

    Article  CAS  PubMed  Google Scholar 

  • Lehmann I, Thoelke A, Rehwagen M et al (2002) The influence of maternal exposure to volatile organic compounds on the cytokine secretion profile of neonatal T cells. Environ Toxicol 17:203–210

    Article  CAS  PubMed  Google Scholar 

  • Leijs MM, Koppe JG, Olie K et al (2009) Effects of dioxins, PCBs, and PBDEs on immunology and hematology in adolescents. Environ Sci Technol 43:7946–7951

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Guo DW, Tian L et al (2010) Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging 31:175–188

    Article  CAS  PubMed  Google Scholar 

  • Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28:10576–10586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luebke RW, Chen DH, Dietert R et al (2006) The comparative immunotoxicity of five selected compounds following developmental or adult exposure. J Toxicol Environ Health B Crit Rev 9:1–26

    Article  CAS  PubMed  Google Scholar 

  • Maffi SK, Rathinam ML, Cherian PP et al (2008) Glutathione content as a potential mediator of the vulnerability of cultured fetal cortical neurons to ethanol-induced apoptosis. J Neurosci Res 86:1064–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mann JR, McDermott S (2011) Are maternal genitourinary infection and pre-eclampsia associated with ADHD in school-aged children? J Atten Disord 15:667–673

    Article  PubMed  Google Scholar 

  • March SM, Cullere ME, Abate P et al (2013) Acetaldehyde reinforcement and motor reactivity in newborns with or without a prenatal history of alcohol exposure. Front Behav Neurosci 7:69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcinko K, Parsons T, Lerch JP et al (2012) Effects of prolonged treatment with memantine in the MRL model of CNS lupus. Clin Exp Neuroimmunol 3:116–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marin I, Kipnis J (2013) Learning and memory … and the immune system. Learn Mem 20:601–606

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Morrison JH (2013) The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79:16–29

    Article  CAS  PubMed  Google Scholar 

  • McLean CW, Mirochnitchenko O, Claus CP et al (2005) Overexpression of glutathione peroxidase protects immature murine neurons from oxidative stress. Dev Neurosci 27:169–175

    Article  CAS  PubMed  Google Scholar 

  • Melnyk S, Fuchs GJ, Schulz E et al (2011) Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord.

    Google Scholar 

  • Meyer U (2013) Prenatal Poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry

    Google Scholar 

  • Money J, Bobrow NA, Clarke FC (1971) Autism and autoimmune disease: a family study. J Autism Child Schizophr 1:146–160

    Article  CAS  PubMed  Google Scholar 

  • Mosharov E, Cranford MR, Banerjee R (2000) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39:13005–13011

    Article  CAS  PubMed  Google Scholar 

  • Mythri RB, Harish G, Dubey SK et al (2011) Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson’s disease. Mol Cell Biochem 347:135–143

    Article  CAS  PubMed  Google Scholar 

  • Nordahl CW, Braunschweig D, Iosif AM et al (2013) Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain Behav Immun 30:61–65

    Article  CAS  PubMed  Google Scholar 

  • Numata S, Ye T, Hyde TM et al (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90:260–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta M, Saito T, Saito K et al (2001) Effect of trichloroethylene on spatiotemporal pattern of LTP in mouse hippocampal slices. Int J Neurosci 111:257–271

    Article  CAS  PubMed  Google Scholar 

  • Onore C, Careaga M, Ashwood P (2012) The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 26:383–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pang Y, Campbell L, Zheng B et al (2010) Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 166:464–475

    Article  CAS  PubMed  Google Scholar 

  • Parachikova A, Green KN, Hendrix C et al (2010) Formulation of a medical food cocktail for Alzheimer’s disease: beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS One 5:e14015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peden-Adams MM, Eudaly JG, Heesemann LM et al (2006) Developmental immunotoxicity of trichloroethylene (TCE): studies in B6C3F1 mice. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:249–271

    Article  CAS  PubMed  Google Scholar 

  • Peden-Adams MM, Eudaly JG, Lee AM et al (2008) Lifetime exposure to trichloroethylene (TCE) does not accelerate autoimmune disease in MRL +/+ mice. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Pellizzari ED, Hartwell TD, Harris BS III et al (1982) Purgeable organic compounds in mother’s milk. Bull Environ Contam Toxicol 28:322–328

    Article  CAS  PubMed  Google Scholar 

  • Ponti G, Peretto P, Bonfanti L (2008) Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. PLoS One 3:e2366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Powell CL, Bradford BU, Craig CP et al (2010) Mechanism for prevention of alcohol-induced liver injury by dietary methyl donors. Toxicol Sci 115:131–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reif JS, Burch JB, Nuckols JR et al (2003) Neurobehavioral effects of exposure to trichloroethylene through a municipal water supply. Environ Res 93:248–258

    Article  CAS  PubMed  Google Scholar 

  • Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533

    Article  PubMed Central  PubMed  Google Scholar 

  • Roth TL, Zoladz PR, Sweatt JD et al (2011) Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res 45:919–926

    Article  PubMed Central  PubMed  Google Scholar 

  • Sable P, Dangat K, Kale A et al (2011) Altered brain neurotrophins at birth: consequence of imbalance in maternal folic acid and vitamin B metabolism. Neuroscience 190:127–134

    Article  CAS  PubMed  Google Scholar 

  • Sajdel-Sulkowska EM, Xu M, Koibuchi N (2009) Increase in cerebellar neurotrophin-3 and oxidative stress markers in Autism. Cerebellum

    Google Scholar 

  • Sajdel-Sulkowska EM, Xu M, McGinnis W et al (2011) Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum 10:43–48

    Article  CAS  PubMed  Google Scholar 

  • Sakic B (2012) The MRL, model: an invaluable tool in studies of autoimmunity-brain interactions. Methods Mol Biol 934:277–299

    Article  PubMed  Google Scholar 

  • Schneider ML, Moore CF, Adkins MM (2011) The effects of prenatal alcohol exposure on behavior: rodent and primate studies. Neuropsychol Rev 21:186–203

    Article  PubMed  Google Scholar 

  • Schwartz M, Cohen I, Lazarov-Spiegler O et al (1999) The remedy may lie in ourselves: prospects for immune cell therapy in central nervous system protection and repair. J Mol Med 77:713–717

    Article  CAS  PubMed  Google Scholar 

  • Semple BD, Blomgren K, Gimlin K et al (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16

    Article  PubMed  Google Scholar 

  • Sexton K, Adgate JL, Church TR et al (2005) Children’s exposure to volatile organic compounds as determined by longitudinal measurements in blood. Environ Health Perspect 113:342–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siegenthaler JA, Sohet F, Daneman R (2013) ‘Sealing off the CNS’: cellular and molecular regulation of blood-brain barriergenesis. Curr Opin Neurobiol.

    Google Scholar 

  • Sweeten TL, Bowyer SL, Posey DJ et al (2003) Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112:e420

    Article  PubMed  Google Scholar 

  • Till C, Westall CA, Rovet JF et al (2001a) Effects of maternal occupational exposure to organic solvents on offspring visual functioning: a prospective controlled study. Teratology 64:134–141

    Article  CAS  PubMed  Google Scholar 

  • Till C, Koren G, Rovet JF (2001b) Prenatal exposure to organic solvents and child neurobehavioral performance. Neurotoxicol Teratol 23:235–245

    Article  CAS  PubMed  Google Scholar 

  • Vitvitsky V, Thomas M, Ghorpade A et al (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281:35785–35793

    Article  CAS  PubMed  Google Scholar 

  • Waly M, Olteanu H, Banerjee R et al (2004) Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 9:358–370

    Article  CAS  PubMed  Google Scholar 

  • Waly MI, Kharbanda KK, Deth RC (2011) Ethanol lowers glutathione in rat liver and brain and inhibits methionine synthase in a cobalamin-dependent manner. Alcohol Clin Exp Res 35:277–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White RF, Feldman RG, Eviator II et al (1997) Hazardous waste and neurobehavioral effects: a developmental perspective. Environ Res 73:113–124

    Article  CAS  PubMed  Google Scholar 

  • Windham GC, Zhang L, Gunier R et al (2006) Autism spectrum disorders in relation to distribution of hazardous air pollutants in the san Francisco bay area. Environ Health Perspect 114:1438–1444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Win-Shwe TT, Tsukahara S, Yamamoto S et al (2010) Up-regulation of neurotrophin-related gene expression in mouse hippocampus following low-level toluene exposure. Neurotoxicology 31:85–93

    Article  CAS  PubMed  Google Scholar 

  • Wong C, Goldstein DR (2013) Impact of aging on antigen presentation cell function of dendritic cells. Curr Opin Immunol 25(4):535–541

    Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    Article  PubMed  Google Scholar 

  • Xu JX, Yang M, Deng KJ et al (2011) Antioxidant activities of Dracocephalum tanguticum maxim extract and its up-regulation on the expression of neurotrophic factors in a rat model of permanent focal cerebral ischemia. Am J Chin Med 39:65–81

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Sulkowski ZL, Parekh P et al (2013a) Effects of perinatal lipopolysaccharide (LPS) exposure on the developing rat brain; modeling the effect of maternal infection on the developing human CNS. Cerebellum 12:572–586

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Sajdel-Sulkowska EM, Iwasaki T et al (2013b) Aberrant cerebellar neurotrophin-3 expression induced by lipopolysaccharide exposure during brain development. Cerebellum 12:316–318

    Article  CAS  PubMed  Google Scholar 

  • Ziv Y, Ron N, Butovsky O et al (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9:268–275

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Blossom PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Blossom, S.J. (2014). Neuroimmune Effects of Developmental TCE Exposure. In: Gilbert, K., Blossom, S. (eds) Trichloroethylene: Toxicity and Health Risks. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6311-4_7

Download citation

Publish with us

Policies and ethics