Advertisement

Application Areas

  • Gernot A. Fink
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

This chapter gives an overview over the most important application areas of Markov model technology. First, he automatic recognition of speech will be considered as the prototypical application before the two further main application areas will be presented, namely character and handwriting recognition as well as the analysis of biological sequences. The chapter closes with an outlook onto some of the many further fields of application for Markov models.

Keywords

Hide Markov Model Speech Recognition Speech Signal Automatic Speech Recognition Vocal Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 4.
    Andreao, R.V., Dorizzi, B., Boudy, J.: ECG signal analysis through hidden Markov models. IEEE Trans. on Biomedical Engineering 53(8), 1541–1549 (2006) CrossRefGoogle Scholar
  2. 9.
    Avendaño, C., Deng, L., Hermansky, H., Gold, B.: The analysis and representation of speech. In: Greenberg, S., Ainsworth, W.A., Popper, A.N., Fay, R.R. (eds.) Speech Processing in the Auditory System. Springer Handbook of Auditory Research, vol. 18, pp. 63–100. Springer, Berlin (2004) CrossRefGoogle Scholar
  3. 12.
    Bairoch, A., Apweiler, R.: The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research 28(1), 45–48 (2000) CrossRefGoogle Scholar
  4. 17.
    Bell, T.C., Cleary, J.G., Witten, I.H.W.: Text Compression. Prentice Hall, Englewood Cliffs (1990) Google Scholar
  5. 26.
    Bogert, B.P., Healy, M.J.R., Tukey, J.W.: The frequency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking. In: Rosenblatt, M. (ed.) Proceedings of the Symposium on Time Series Analysis (1962, Providence, Rhode Island), pp. 209–243. Wiley, New York (1963) Google Scholar
  6. 29.
    Brand, M., Oliver, N., Pentland, A.: Coupled hidden Markov models for complex action recognition. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 994–999 (1997) Google Scholar
  7. 31.
    Bregler, C.: Learning and recognizing human dynamics in video sequences. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 568–571 (1997) Google Scholar
  8. 33.
    Brindöpke, C., Fink, G.A., Kummert, F.: A comparative study of HMM-based approaches for the automatic recognition of perceptively relevant aspects of spontaneous German speech melody. In: Proc. European Conf. on Speech Communication and Technology, Budapest, vol. 2, pp. 699–702 (1999) Google Scholar
  9. 36.
    Bunke, H., Wang, P.S.P. (eds.): Handbook of Character Recognition and Document Image Analysis. World Scientific, Singapore (1997) Google Scholar
  10. 39.
    Calinon, S., Billard, A.: Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM. In: Proc. Int. Conf. on Machine Learning, Bonn, Germany, pp. 105–112 (2005) Google Scholar
  11. 41.
    Chen, C., Liang, J., Zhao, H., Hu, H.: Gait recognition using hidden Markov model. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) Advances in Natural Computation. Lecture Notes in Computer Science, vol. 4221, pp. 399–407. Springer, Berlin (2006) CrossRefGoogle Scholar
  12. 47.
    Clark, J., Yallop, C.: An Introduction to Phonetics and Phonology. Blackwell, Oxford (1990) Google Scholar
  13. 50.
    D’Amato, D.P., Kuebert, E.J., Lawson, A.: Results from a performance evaluation of handwritten address recognition systems for the United States postal service. In: Proc. 7th Int. Workshop on Frontiers in Handwriting Recognition, Amsterdam, pp. 249–260 (2000) Google Scholar
  14. 51.
    Daniels, P.T., Bright, W. (eds.): The World’s Writing Systems. Oxford University Press, New York (1996) Google Scholar
  15. 55.
    Dengel, A., Hoch, R., Hönes, F., Jäger, T., Malburg, M., Weigel, A.: Techniques for improving OCR results. In: Bunke, H., Wang, P.S.P. (eds.) Handbook of Character Recognition and Document Image Analysis, pp. 227–258. World Scientific, Singapore (1997) CrossRefGoogle Scholar
  16. 62.
    Dreuw, P., Rybach, D., Deselaers, T., Zahedi, M.t., Ney, H.: Speech recognition techniques for a sign language recognition system. In: Interspeech, Antwerp, Belgium, pp. 2513–2516 (2007) Google Scholar
  17. 67.
    Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998) CrossRefGoogle Scholar
  18. 69.
    Eddy, S.R.: Multiple alignment using Hidden Markov Models. In: Proc. Int. Conf. on Intelligent Systems for Molecular Biology, pp. 114–120 (1995) Google Scholar
  19. 70.
    Eddy, S.R.: Profile Hidden Markov Models. Bioinformatics 14(9), 755–763 (1998) CrossRefGoogle Scholar
  20. 72.
    Eickeler, S., Kosmala, A., Rigoll, G.: Hidden Markov Model based continuous online gesture recognition. In: Proc. Int. Conf. on Pattern Recognition, vol. 2, pp. 1206–1208 (1998) Google Scholar
  21. 73.
    Eickeler, S., Müller, S., Rigoll, G.: High performance face recognition using pseudo 2D-Hidden Markov Models. In: Proc. European Control Conference, Karlsruhe (1999) Google Scholar
  22. 74.
    Elmezain, M., Al-Hamadi, A., Appenrodt, J., Michaelis, B.: A hidden Markov model-based continuous gesture recognition system for hand motion trajectory. In: Proc. Int. Conf. on Pattern Recognition, Tampa, FL, USA (2008) Google Scholar
  23. 75.
    Elms, A.J., Procter, S., Illingworth, J.: The advantage of using an HMM-based approach for faxed word recognition. Int. J. Doc. Anal. Recognit. 1(1), 18–36 (1998) CrossRefGoogle Scholar
  24. 76.
    Ewens, W.J., Grant, G.R.: Statistical Methods in Bioinformatics: An Introduction, 2nd edn. Statistics for Biology and Health. Springer, Berlin (2001) CrossRefGoogle Scholar
  25. 92.
    Fink, G.A., Wienecke, M., Sagerer, G.: Video-based on-line handwriting recognition. In: Proc. Int. Conf. on Document Analysis and Recognition, pp. 226–230 (2001) Google Scholar
  26. 97.
    Flach, G., Hoffmann, R., Rudolpy, T.: Eine aktuelle Evaluation kommerzieller Diktiersysteme (An up to date evaluation of commercial dictation systems). In: Konvens 2000/Sprachkommunikation. ITG-Fachbericht, vol. 161, pp. 51–55. VDE Verlag, Berlin (2000) (in German) Google Scholar
  27. 104.
    Gader, P.D., Mystkowski, M., Zhao, Y.: Landmine detection with ground penetrating radar using hidden Markov models. IEEE Trans. Geosci. Remote Sens. 39(6), 1231–1244 (2001) CrossRefGoogle Scholar
  28. 112.
    Ghosh, D., Dube, T., Shivaprasad, A.P.: Script recognition – a review. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2142–2161 (2010) CrossRefGoogle Scholar
  29. 118.
    Haussler, D., Kulp, D., Reese, M.G., Eckmann, F.H.: A generalized Hidden Markov Model for the recognition of human genes in DNA. In: Proc. Int. Conf. on Intelligent Systems for Molecular Biology, St. Louis, pp. 134–142 (1996) Google Scholar
  30. 120.
    Hoey, J., Little, J.J.: Representation and recognition of complex human motion. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 752–759 (2000) Google Scholar
  31. 121.
    Hovland, G.E., Sikka, P., McCarragher, B.J.: Skill acquisition from human demonstration using a Hidden Markov Model. In: Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, pp. 2706–2711 (1996) CrossRefGoogle Scholar
  32. 123.
    Huang, X., Acero, A., Hon, H.-W.: Spoken Language Processing: A Guide to Theory, Algorithm, and System Development. Prentice Hall, Englewood Cliffs (2001) Google Scholar
  33. 127.
    Hughes, N.P., Tarassenko, L., Roberts, S.J.: Markov models for automated ecg interval analysis. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004) Google Scholar
  34. 129.
  35. 131.
    International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001) CrossRefGoogle Scholar
  36. 132.
    International Human Genome Sequencing Consortium: Fishing the euchromatic sequence of the human genome. Nature 43, 931–945 (2004) CrossRefGoogle Scholar
  37. 141.
    Joshi, D., Li, J., Wang, J.Z.: A computationally efficient approach to the estimation of two- and three-dimensional hidden Markov models. IEEE Trans. Image Process. 15(7), 1871–1886 (2006) CrossRefMathSciNetGoogle Scholar
  38. 144.
    Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., Roy-Chowdhury, A.K., Krüger, V., Chellappa, R.: Identification of humans using gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004) CrossRefGoogle Scholar
  39. 149.
    Kim, D., Song, J., Kim, D.: Simultaneous gesture segmentation and recognition based on forward spotting accumulative HMMs. Pattern Recognit. 40, 3012–3026 (2007) CrossRefzbMATHGoogle Scholar
  40. 160.
    Krogh, A.: An introduction to Hidden Markov Models for biological sequences. In: Salzberg, S.L., Searls, D.B., Kasif, S. (eds.) Computational Methods in Molecular Biology, pp. 45–63. Elsevier, New York (1998) CrossRefGoogle Scholar
  41. 161.
    Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden Markov Models in computational biology: applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (1994) CrossRefGoogle Scholar
  42. 165.
    Lam, L., Suen, C.Y., Guillevic, D., Strathy, N.W., Cheriet, M., Liu, K., Said, J.N.: Automatic processing of information on cheques. In: Proc. Int. Conf. on Systems, Man & Cybernetics, Vancouver, vol. 3, pp. 2353–2358 (1995) Google Scholar
  43. 173.
    Leite, P.B.C., Feitosa, R.Q., Formaggio, A.R., da Costa, G.A.O.P., Pakzad, K., Sanches, I.D.: Hidden Markov models for crop recognition in remote sensing image sequences. Pattern Recognit. Lett. 32(1), 19–26 (2011) CrossRefGoogle Scholar
  44. 175.
    Li, J., Gray, R.M., Olshen, R.A.: Multiresolution image classification by hierarchical modeling with two-dimensional hidden Markov models. IEEE Trans. Inf. Theory 46(5), 1826–1841 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  45. 176.
    Li, J., Najmi, A., Gray, R.M.: Image classification by a two-dimensional Hidden Markov Model. IEEE Trans. Signal Process. 48(2), 517–533 (2000) CrossRefGoogle Scholar
  46. 177.
    Lien, J.J., Kanade, T., Zlochower, A.J., Cohn, J.F., Li, C.-C.: Automatically recognizing facial expressions in the spatio-temporal domain. In: Proc. Workshop on Perceptual User Interfaces, Banff, Alberta, Canada, pp. 94–97 (1997) Google Scholar
  47. 179.
    Liu, Z., Sarkar, S.: Improved gait recognition by gait dynamics normalization. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 863–876 (2006) CrossRefGoogle Scholar
  48. 181.
    Lombard, E.: Le signe de l’élévation de la voix. Annales des maladies de l’oreilles, du larynx, du nez et du pharynx 37, 101–119 (1911) Google Scholar
  49. 192.
    Marti, U.-V., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. Int. J. Doc. Anal. Recognit. 5(1), 39–46 (2002) CrossRefzbMATHGoogle Scholar
  50. 200.
    Mori, S., Nishida, H.: Optical Character Recognition. Wiley, New York (1998) Google Scholar
  51. 201.
    Munich, M.E., Perona, P.: Visual input for pen-based computers. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 313–328 (2002) CrossRefGoogle Scholar
  52. 202.
    Nam, Y., Wohn, K.: Recognition of hand gestures with 3D, nonlinear arm movement. Pattern Recognit. Lett. 18(1), 105–113 (1997) CrossRefGoogle Scholar
  53. 213.
    Nickel, K., Stiefelhagen, R.: Visual recognition of pointing gestures for human-robot interaction. Image Vis. Comput. 25(12), 1875–1884 (2007) CrossRefGoogle Scholar
  54. 219.
    Nwe, T.L., Foo, S.W., Silva, L.C.D.: Speech emotion recognition using hidden Markov models. Speech Commun. 41(4), 603–623 (2003) CrossRefGoogle Scholar
  55. 220.
    Obermaier, B., Guger, C., Neuper, C., Pfurtscheller, G.: Hidden Markov models for online classification of single trial EEG data. Pattern Recognit. Lett. 22(12), 1299–1309 (2001) CrossRefzbMATHGoogle Scholar
  56. 222.
    Ohler, U., Harbeck, S., Niemann, H., Nöth, E., Reese, M.G.: Interpolated Markov chains for eukaryotic promoter recognition. Bioinformatics 15(5), 362–369 (1999) CrossRefGoogle Scholar
  57. 241.
    Plötz, T., Fink, G.A.: Markov Models for Handwriting Recognition. Springer Briefs in Computer Science. Springer, Berlin (2011) CrossRefzbMATHGoogle Scholar
  58. 244.
    Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Research and Development in Information Retrieval, pp. 275–281 (1998) Google Scholar
  59. 249.
    Pruteanu-Malinici, I., Carin, L.: Infinite hidden Markov models and ISA features for unusual-event detection in video. In: IEEE Int. Conf. on Image Processing, vol. 5, pp. 137–140 (2007) Google Scholar
  60. 253.
    Richarz, J., Fink, G.A.: Visual recognition of 3d emblematic gestures in an hmm framework. J. Ambient Intell. Smart Environ. 3(3), 193–211 (2011). Thematic Issue on Computer Vision for Ambient Intelligence Google Scholar
  61. 266.
    Salzberg, S.L., Delcher, A.L., Kasif, S., White, O.: Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26(2), 544–548 (1998) CrossRefGoogle Scholar
  62. 267.
    Samaria, F., Young, S.: HMM-based architecture for face identification. Image Vis. Comput. 12, 537–543 (1994) CrossRefGoogle Scholar
  63. 270.
    Schmid, G., Schukat-Talamazzini, E.G., Niemann, H.: Analyse mehrkanaliger Meßreihen im Fahrzeugbau mit Hidden Markovmodellen (Analysis of multi-channel measurement data in car manufacturing by hidden Markov models). In: Pöppl, S. (ed.) Mustererkennung 1993, 15. DAGM Symposium. Informatik aktuell, pp. 391–398. Springer (1993) (in German) Google Scholar
  64. 275.
    Schürmann, J.: Pattern Classification. Wiley, New York (1996) Google Scholar
  65. 288.
    Starner, T., Pentland, A.: Visual recognition of American Sign Language using Hidden Markov Models. In: International Workshop on Automatic Face and Gesture Recognition, Zürich, pp. 189–194 (1995) Google Scholar
  66. 291.
    Sundaresan, A., Chowdhury, A.R., Chellappa, R.: A hidden Markov model based framework for recognition of humans from gait sequences. In: Int. Conf. on Image Processing (2003) Google Scholar
  67. 293.
    Tokuda, K., Nankaku, Y., Toda, T., Zen, H., Yamagishi, J., Oura, K.: Speech synthesis based on hidden Markov models. Proc. IEEE 101(5), 1234–1252 (2013) CrossRefGoogle Scholar
  68. 295.
    Venter, J.C., et al.: The sequence of the human genome. Science 291, 1304–1351 (2001) CrossRefGoogle Scholar
  69. 300.
    Weitzenberg, J., Posch, S., Rost, M.: Diskrete Hidden Markov Modelle zur Analyse von Meßkurven amperometrischer Biosensoren (Discrete hidden Markov models for the analysis of measurement curves of amperometric biosensors). In: Sommer, G., Krüger, N., Perwass, C. (eds.) Mustererkennug 2000. Proceedings 22. DAGM-Symposium. Informatik Aktuell, pp. 317–324. Springer, Berlin (2000) (in German) CrossRefGoogle Scholar
  70. 303.
    Wells, J.: SAMPA – Computer Readable Phonetic Alphabet (2005). http://www.phon.ucl.ac.uk/home/sampa/home.htm
  71. 310.
    White, D.J.: Markov Decision Processes. Wiley, New York (1993) zbMATHGoogle Scholar
  72. 313.
    Wienecke, M., Fink, G.A., Sagerer, G.: A handwriting recognition system based on visual input. In: Schiele, B., Sagerer, G. (eds.) Computer Vision Systems. Lecture Notes in Computer Science, pp. 63–72. Springer, Berlin (2001) Google Scholar
  73. 318.
    Winograd, T.: Language as a Cognitive Process, vol. 1: Syntax. Addison-Wesley, Reading (1983) zbMATHGoogle Scholar
  74. 323.
    Yamamoto, J., Ohya, J., Ishii, K.: Recognizing human action in time-sequential images using Hidden Markov Models. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 379–387 (1992) Google Scholar
  75. 329.
    Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I.: Semi-supervised adapted HMMs for unusual event detection. In: Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 611–618 (2005) Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Gernot A. Fink
    • 1
  1. 1.Department of Computer ScienceTU Dortmund UniversityDortmundGermany

Personalised recommendations