Dictionary-Based Domain Adaptation Methods for the Re-identification of Faces

Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

Re-identification refers to the problem of recognizing a person at a different location after one has been captured by a camera at a previous location. We discuss re-identification of faces using the domain adaptation approach which tackles the problem where data in the target domain (different location) are drawn from a different distribution as the source domain (previous location), due to different view points, illumination conditions, resolutions, etc. In particular, we discuss the adaptation of dictionary-based methods for re-identification of faces. We first present a domain adaptive dictionary learning (DADL) framework for the task of transforming a dictionary learned from one visual domain to the other, while maintaining a domain-invariant sparse representation of a signal. Domain dictionaries are modeled by a linear or nonlinear parametric function. The dictionary function parameters and domain-invariant sparse codes are then jointly learned by solving an optimization problem. We then discuss an unsupervised domain adaptive dictionary learning (UDADL) method where labeled data are only available in the source domain. We propose to interpolate subspaces through dictionary learning to link the source and target domains. These subspaces are able to capture the intrinsic domain shift and form a shared feature representation for cross-domain identification.

Keywords

Manifold Azimuth Deconvolution 

Notes

Acknowledgments

The work reported here is partially supported by a MURI Grant N00014-08-1-0638 from the Office of Naval Research

References

  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD : An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  2. 2.
    Ahonen, T., Rahtu, E., Ojansivu, V., Heikkilä, J.: Recognition of blurred faces using local phase quantization. In: International Conference on Pattern Recognition (2008)Google Scholar
  3. 3.
    Biswas, S., Aggarwal, G., Chellappa, R.: Robust estimation of albedo for illumination-invariant matching and shape recovery. IEEE Trans. Pattern Anal. Mach. Intell. 31, 884–899 (2009)CrossRefGoogle Scholar
  4. 4.
    Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (2006)Google Scholar
  5. 5.
    Chellappa, R., Ni, J., Patel, V.M.: Remote identification of faces: Problems, prospects, and progress. Pattern Recogn. Lett. 33, 1849–1859 (2012)CrossRefGoogle Scholar
  6. 6.
    Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comp. 20, 33–61 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Daume III, H.: Frustratingly easy domain adaptation. In: Proceedings of the 45th Annual Meeting of the Association of, Computational Linguistics (2007)Google Scholar
  8. 8.
    Duan, L., Xu, D., Tsang, I.W.H., Luo, J.: Visual event recognition in videos by learning from web data. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1785–1792 (2011)Google Scholar
  9. 9.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Imag. Process. 15(12), 3736–3745 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Engan, K., Aase, S.O., Hakon Husoy, J.: Method of optimal directions for frame design. In: International Conference on Acoustics, Speech, and, Signal Processing (1999)Google Scholar
  11. 11.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23, 643–660 (2001)CrossRefGoogle Scholar
  12. 12.
    Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  13. 13.
    Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: An unsupervised approach. In: International Conference on Computer Vision (2011)Google Scholar
  14. 14.
    Gross, R., Matthews, I., Baker, S.: Appearance-based face recognition and light-fields. IEEE Trans. Pattern Anal. Mach. Intell. 26, 449–465 (2004)CrossRefGoogle Scholar
  15. 15.
    Jhuo, I.H., Liu, D., Lee, D.T., Chang, S.F.: Robust visual domain adaptation with low-rank reconstruction. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  16. 16.
    Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2011)Google Scholar
  17. 17.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  18. 18.
    Machado, L., Leite, F.S.: Fitting smooth paths on riemannian manifolds. Int. J. Appl. Math. Stat. 4, 25–53 (2006)MATHMathSciNetGoogle Scholar
  19. 19.
    Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Imag. Process. 17(1), 53–69 (2008)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ni, J., Qiu, Q., Chellappa, R.: Subspace interpolation via dictionary learning for unsupervised domain adaptation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  21. 21.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)CrossRefGoogle Scholar
  22. 22.
    Pan, S.J., Kwok, J.T., Yang, Q.: Transfer learning via dimensionality reduction. In: Proceedings of the 23rd National Conference on Artificial Intelligence (2008)Google Scholar
  23. 23.
    Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. In: International Joint Conferences on Artificial Intelligence (2009)Google Scholar
  24. 24.
    Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44 Pacific Grove, CA (1993)Google Scholar
  25. 25.
    Qiu, Q., Jiang, Z., Chellappa, R.: Sparse dictionary-based representation and recognition of action attributes. In: International Conference on Computer Vision, pp. 707–714 (2011)Google Scholar
  26. 26.
    Qiu, Q., Patel, V., Turaga, P., Chellappa, R.: Domain adaptive dictionary learning. In: Proceedings of European Conference on Computer Vision (2012)Google Scholar
  27. 27.
    Rubinstein, R., Bruckstein, A., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)CrossRefGoogle Scholar
  28. 28.
    Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Proceedings of European Conference on Computer Vision (2010)Google Scholar
  29. 29.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1615–1618 (2003)CrossRefGoogle Scholar
  30. 30.
    Tropp, J.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theor. 50, 2231–2242 (2004)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1991)Google Scholar
  32. 32.
    Wang, C., Mahadevan, S.: Manifold alignment without correspondence. In: International Joint Conferences on, Artificial Intelligence, pp. 1273–1278 (2009)Google Scholar
  33. 33.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  34. 34.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)CrossRefGoogle Scholar
  35. 35.
    Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive svms. In: ACM Multimedia, pp. 188–197. ACM (2007)Google Scholar
  36. 36.
    Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  37. 37.
    Zheng, W.S., Gong, S., Xiang, T.: Reidentification by relative distance comparison. IEEE Trans. Pattern Anal. Mach. Intell. 35, 653–668 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.Center for Automation ResearchUMIACS, University of MarylandCollege ParkUSA

Personalised recommendations