Skip to main content

Advanced Transport Systems: Technologies and Environment

  • Chapter
  • First Online:
Advanced Transport Systems
  • 2975 Accesses

Abstract

This chapter deals with the performances of advanced passenger cars, large advanced container ships, and LH2 (Liquid Hydrogen)-fuelled commercial air transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the total weight (tons) that a given ship can safely carry. It includes payload (cargo), fuel, water, supplies, crew, etc.

  2. 2.

    Equivalent RPKs are regarded as the sum of RPKs and RTKs (Revenue Ton Kilometers) (1 RTK = 10 RPK).

  3. 3.

    The average growth rate of APT demand over the entire time horizon is about 3.2 %, which is similar to the growth rate of 3.1 % over the 1990–2050 period in one of the scenarios of the air traffic growth developed by IPCCs. This rate produces a total of about 16.5 trillion RPKs in 2050 and 26.02 trillion RTKs in 2065 (IPCC 1999).

References

  • AECOM. (2012). NC maritime strategy: Vessel size vs. cost. Prepared for the North Carolina Department of Transportation, Architecture, Engineering, Consulting, Operations and Maintenance Los Angeles, California, USA.

    Google Scholar 

  • AIRBUS. (2006). Airbus global market forecast. Toulouse: Airbus Industrie.

    Google Scholar 

  • An, P., Sauer, A. (2004). Comparison of passenger vehicle fuel economy and GHG emission standards around the world. Arlington: World Resource Institute, New Center for Global Climate Change.

    Google Scholar 

  • Archer, D. (2008). The long thaw: How humans are changing the next 100,000 years of earth’s climate. Princeton: Princeton University.

    Google Scholar 

  • Bodek, K., & Heywood, J. (2008). Europe’s evolving passenger vehicle fleet: Fuel use and GHG emissions scenarios through 2035. Cambridge: Laboratory for Energy and Environment, Massachusetts Institute of Technology (MIT).

    Google Scholar 

  • Boeing. (2007). Current market outlook 2007: How will you travel through life? Seattle: Boeing Commercial Airplanes.

    Google Scholar 

  • Bossel, U., Eliasson, B. (2003). Energy and the hydrogen economy. Baden-Dattwil: Report ABB Switzerland Ltd. Corporate Research.

    Google Scholar 

  • Brewer, G. D. (1991). Hydrogen aircraft technology. Boca Raton: CRC Press.

    Google Scholar 

  • Cambell, C. J. (2002). Peak oil: An outlook on crude oil depletion. Retrieved from http://www.greatchange.org/ov-campbell,outlook.html

  • Chen, C., & Ren, Y. (2010). Exploring the relationship between vehicle safety and fuel efficiency in automotive design. Transportation Research D, 15(2), 112–116.

    Article  Google Scholar 

  • Chevron, (2006), Alternative jet fuels, addendum 1 to aviation fuels technical reviews (FTR-3/A1), Chevron Corporation, USA.

    Google Scholar 

  • CGI. (2007). Container terminal parameters: A white paper. Prepared for Marine Department of Transportation, The Cornell Group, Inc., Fairfax.

    Google Scholar 

  • Chi, G., Stone, B. Jr. (2005) Sustainable transport planning: Estimating the ecological footprint of vehicle travel in future years. ASCE Journal of Urban Planning and Development, September, 170–180.

    Google Scholar 

  • Churchill, J., Johnson, B. (2012). Saving billions on bunkers. Maersk Post. May 2012, pp. 9–12.

    Google Scholar 

  • Coelho, M. C., & Luzia, M. B. (2010). Evaluating the energy performance of a SUV hybrid electric vehicle. Transportation Research D, 15(8), 443–450.

    Article  Google Scholar 

  • Corchero, G., Montanes, J. l. (2005). An approach to use hydrogen for commercial aircraft engines. Journal of Aerospace Engineering, 219G, 35–44.

    Google Scholar 

  • Cullinane, K., & Khanna, M. (2000). Economies of scale in large containerships: Optimal size and geographical implications. Journal of Transport Geography, 8(3), 181–195.

    Article  Google Scholar 

  • Daggett, L. D., Hebdicks, L. C., Walhter, R., Corporan, E. (2006). Alternate fuels and their potential impact on aviation, NASA/TM-2006-214365. National Aeronautics and Space Administration, Glenn Research Centre, Ohio, USA.

    Google Scholar 

  • DeLuchi, M. A. (1989). Hydrogen vehicles: An evaluation of fuel storage, performance, safety, Environmental impact, and costs. International Journal of Hydrogen Energy, 14(2), 81–130.

    Article  Google Scholar 

  • DNV. (2012). What is the optimum speed for a 20kTEU container ship? Container Ship Update, 1, 15–16.

    Google Scholar 

  • DSC. (2010). Container freight rate insight: Bi-monthly pricing benchmarks on the CONTAINER market. London: Drewry Shipping Consultants Ltd.

    Google Scholar 

  • Eberhard, M., & Tarpening, M. (2006). The 21st century electric car. Paolo Alto: Tesla Motors Inc., Tesla North America.

    Google Scholar 

  • EC. (2003). Liquid hydrogen fuelled aircraft- system analysis (CRYOPLANE). European Commission, 5th R&D Framework Program (Growth 1998–2002), Brussels, Belgium.

    Google Scholar 

  • EC. (2010a). Energy, transport, and environment indicators, EUROSTAT, Statistical books, European Commission, Luxembourg.

    Google Scholar 

  • EC. (2010b). EU transport GHG: Routes to 2050? Review of potential radical Future transport technologies and concepts. Report VI, The European Commission’s Directorate General Environment, European Commission, Brussels, Belgium.

    Google Scholar 

  • EEA. (2008). EU27 electricity production by fuel. Copenhagen: European Environmental Agency.

    Google Scholar 

  • EEA. (2010). European union emission inventory report 1990–2008 under the INECE convention on long range trans boundary air pollution (LRTAP). Copenhagen: European Environmental Agency.

    Google Scholar 

  • EEA. (2012). The contribution of transport to AIR quality Term 2012: Transport indicators tracking progress towards environmental targets in Europe. Copenhagen: European Environment Agency.

    Google Scholar 

  • EEC. (2005). GAES-Future Engine Technology Environmental Impact. Report No. EEC/SEE/2005/002, EUROCONTROL Experimental Centre, Bretigny Sur Orge, France.

    Google Scholar 

  • Ewing, G. O., Sarigöllü, E., & Gordon, O. (1998). Car fuel-type choice under travel demand management and economic incentives. Transportation Research D, 3(6), 429–444.

    Article  Google Scholar 

  • Flikkema M., Nieuwenhuis, J. J., Duursema, W. (2012). MIP Project “EEDI, Ontwikkeling van alternatieve CO2 index voor kleine handelsvaart schepen en short sea schepen: Current State of Regulations and Literature Survey. Report 1, MARIN Conoship, Groningen, The Netherlands.

    Google Scholar 

  • Funk, K., & Rabl, A. (1999). Electric versus conventional vehicles: Social costs and benefits in France. Transportation Research D, 4, 397–411.

    Article  Google Scholar 

  • Georgakellos, D. A. (2008). A polygon-based environmental appraisal of new vehicle technologies combined with renewable energy sources. Transportation Research D, 13(4), 283–288.

    Article  Google Scholar 

  • GL. (2012). In focus: Containerships: Boosting performance with efficient solutions. Germanischer Lloyd, Hamburg.

    Google Scholar 

  • Greene, D. L., & Hopson, J. L. (2003). Running out of and into oil: Analyzing global depletion and transition through 2050 ORNL/TM-2003/259. Oak Ridge: Oak Ridge National Laboratory.

    Book  Google Scholar 

  • Guynn, M. D., Olson, E. D. (2002). Evaluation of an aircraft concept with over-wing hydrogen-fuelled engines for reduced noise and emissions. Technical Memorandum, NASA/TM = 2002-211926, National Aeronautics and Space Administration, Langley Research Centre, Hampton, Virginia, USA.

    Google Scholar 

  • Haller, M., Welch, E., Lin, J., & Fulla, S. (2008). Economic costs and environmental impacts of alternative fuel vehicle fleets in local government: An interim assessment of a voluntary ten-year fleet conversion plan. Transportation Research D, 12(3), 219–230.

    Article  Google Scholar 

  • Hamilton, W. (1980). Energy use of electric vehicles. Transportation Research A, 14A, 415–421.

    Article  Google Scholar 

  • Heffner, R. R., Kurani, K. S., & Turrentine, T. S. (2007). Symbolism in California’s early market for hybrid electric vehicles. Transportation Research D, 2(6), 396–413.

    Article  Google Scholar 

  • Higgins, C. J. H., Matthews, S., Hendrickson, C. T., & Small, M. J. (2007). Lead demand of future vehicle technologies. Transportation Research D, 12(2), 103–114.

    Article  Google Scholar 

  • Hörmandinger, G., & Lucas, N. J. D. (1996). Is clean enough? The influence of environmental externalities on markets for fuel cells in transport. Transportation Research D, 1(1), 63–78.

    Article  Google Scholar 

  • ICAO. (2008). ICAO environmental report 2007. Montreal, Canada: International Civil Aviation Organization.

    Google Scholar 

  • ICG. (2010). Electric car markets in Europe: 10 countries analysis and strategic review. Edinburgh: International Consultancy Group Ltd.

    Google Scholar 

  • IEA. (2006). Hydrogen production and storage: Research & development priorities and gaps. Paris: International Energy Agency.

    Google Scholar 

  • IEA. (2009). Hybrid & Electric Vehicles: Implementing Agreement. IA-HEV Outlook 2009, International Energy Agency, Paris, France

    Google Scholar 

  • IMO. (2007). FSA (Formal Safety Assessment)—Container vessels: Details on the formal safety assessment, MSC83/INF 8. London: International Maritime Organization.

    Google Scholar 

  • IMO. (2011). Main Events in IMO’s Work on Limitation and Reduction of Green house Gas Emissions from International Shipping. International Maritime Organization, London, UK.

    Google Scholar 

  • IPCC. (1999). Aviation and the global atmosphere, intergovernmental panel of climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2001). Climate change 2001: Synthesis report. Contribution of Working Groups I, II, and II and III to the Third Assessment Report of IPCC, Intergovernmental Panel of Climate Change, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IPTS. (2003). Dynamics of introducing of new passenger car technologies: The IPTS transport technologies model. Seville: Institute for Progressive Technological Studies, p. 76.

    Google Scholar 

  • IPTS. (2008). Environmental Improvement of Passenger Cars (IMPRO-car). Seville: Institute for Progressive Technological Studies.

    Google Scholar 

  • Janic, M. (2008). The potential of liquid hydrogen for the future ‘Carbon Neutral’ air transport system. Transportation Research D, 13(7), 428–435.

    Article  Google Scholar 

  • Janic, M. (2010). Is liquid hydrogen a solution for mitigating air pollution by airports? International Journal of Hydrogen Energy, 35(5), 2190–2202.

    Article  Google Scholar 

  • Johansson, B. (1999). The economy of alternative fuels when including the cost of air pollution. Transportation Research D, 4(2), 91–108.

    Article  Google Scholar 

  • Johansson, B., & Ã…hman, M. (2002). A comparison of technologies for carbon-neutral passenger transport. Transportation Research D, 7(3), 175–196.

    Article  Google Scholar 

  • Kang, J. E., Recker, W. W. (2009). An activity-based assessment of the potential impacts of plug-in hybrid electric vehicles on energy and emissions using 1-day travel data. Transportation Research D, 14(8), 541–556.

    Google Scholar 

  • Kempton, W., & Letendre, S. E. (1997). Electric vehicles as a new power source for electric utilities. Transportation Research D, 2(3), 157–175.

    Article  Google Scholar 

  • Koyanagi, F., & Uriu, J. (1997). Modeling power consumption of electric vehicles and its impacts on power demand. Electrical Engineering in Japan, 120(4), 41–46.

    Article  Google Scholar 

  • Kurani, K. S., Turrentine, T. S., & Sperling, D. (1996). Testing electric vehicle demand in ‘HYBRID Households’ using a reflexive survey. Transportation Research Part D, 1(2), 131–150.

    Article  Google Scholar 

  • Lave, L. B., & MacLean, H. L. (2002). An environmental-economic evaluation of hybrid electric vehicles: Toyota’s Prius vs. its conventional internal combustion engine corolla. Transportation Research D, 7(2), 155–162.

    Article  Google Scholar 

  • Learmount, D. (2007). New-technology aircraft to reduce average fuel consumption. Retrieved from http://www.flightglobal.com

  • Lee, J. J., Lukachko, S., Waitz, I. A. (2004). Aircraft and energy use. Encyclopedia of Energy (Vol. 1, pp. 1–11). Philadelphia: Elsevier Science Publisher.

    Google Scholar 

  • LR. (2011). Assessment of IMO mandated energy efficiency measures for international shipping: Estimated CO 2 emissions reduction from introduction of mandatory Technical and operational energy efficiency measures for ships. MEPC 63/INF.2 Annex, Lloyd’s Register, London, UK.

    Google Scholar 

  • Mabit, L. S., & Fosgerau, M. (2011). Demand for alternative-fuel vehicles when registration taxes are high. Transportation Research D, 16, 225–231.

    Article  Google Scholar 

  • Diesel, M. A. N. (2011). Propulsion trends in container vessels. Copenhagen: MAN Diesel-Powering the World.

    Google Scholar 

  • Marquart, S., Ponater, M., Strom, L., & Gierens, K. (2005). An upgraded estimate of the relative forcing of cyroplane contrails. Meteorologische Zeitschrift, Gebruder Bontraeger, 14, 573–582.

    Article  Google Scholar 

  • MEPC. (2012). 2012 Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships (Vol. 212, no. 63). [Annex 8, Resolution MEPC]. London, UK: The Marine Environment Protection Committee.

    Google Scholar 

  • Line, Maersk. (2011). Sustainability progress report 2011-Route 2. Copenhagen: Maersk Line.

    Google Scholar 

  • Nakata, T. (2000). Analysis of the impact of hybrid vehicles on energy systems in Japan. Transportation Research D, 5(5), 373–383.

    Article  MathSciNet  Google Scholar 

  • Nottebon, T., Rodrigue J. P. (2007). The next fifty years of containerization: container vessels, linear shipping, and port terminal. In Proceedings of the 52 nd Annual Meeting of Association of American Geographers, San Francisco, California, USA.

    Google Scholar 

  • Notteboom, T. & Carriou, P. (2009). Fuel surcharge practices of container shipping lines: is it about cost recovery or revenue making?. In Proceedings of the 2009 International Association of Maritime Economists (IAME) Conference, June 2009, Copenhagen, Denmark.

    Google Scholar 

  • NYK Line/MTI. (2010). NYK Super Eco Ship 2030 – Our Concept Ship in the Future. Presentation, Nippon Yusen Kabushiki Kaisha, Tokyo, Japan.

    Google Scholar 

  • Ogden, M. J. (1997). Infrastructure for hydrogen cell vehicles: A Southern California case study. ’97 World car conference, Riverside, California, USA.

    Google Scholar 

  • OI. (2011). The vision scenario for the European union: 2011 update for the EU-27. Oko-Institute, Institute for Applied Ecology, Berlin, Germany.

    Google Scholar 

  • OSSL. (2009). Green ship of the future: 8500 TEU container ship concept study. Odense: Odense Steel Ship Yard Ltd.

    Google Scholar 

  • Penner, J. E. (1999). Aviation and the global atmosphere (p. 257). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pfeiffer, A. D. (2004). The end of oil age. Raleigh: Lulu.com.

    Google Scholar 

  • Rienstra, S. A., & Nijkamp, P. (1998). The role of electric cars in Amsterdam’s transport system in the year 2015: A scenario approach. Transportation Research D, 3(1), 29–40.

    Article  Google Scholar 

  • Rudolf, C. D, I. I. I. (2007). Ship-to-shore productivity: Can it keep up with mega-ship size increases? Part 1. Port Technology International, 34(3), 1–5.

    MATH  Google Scholar 

  • Sala, S. (2010). Energy efficiency and the shipping industry. DELTAMARIN, www.deltamarin.com

  • Schock, R. N., Berry, C. D., Smith, R., Rambach, G. D. (1995). Hydrogen as a new transportation fuel. Lawrence Livermore National Laboratory, University of Melbourne, Australia

    Google Scholar 

  • Schwoon, M. (2007). A tool to optimize the initial distribution of hydrogen filling stations. Transportation Research D, 12(2), 70–82.

    Article  Google Scholar 

  • Spiegel, R. J. (2004). Platinum and fuel cells. Transportation Research D, 9(5), 357–371.

    Article  Google Scholar 

  • Svensson, E., Hasselrot, A., & Moldanova, J. (2004). Reduced environmental impact by lowered cruise altitude for liquid hydrogen-fuelled aircraft. Aerospace Science and Technology, 8, 307–320.

    Article  Google Scholar 

  • Tozer, D. R. (2001). Ultra-Large Container Ships (ULCS). In Proceedings of Lloyd’s Register Technical Association, London, UK.

    Google Scholar 

  • UNCDAT. (2012). Review of maritime transport 2012, Report of the UNCTAD Secretariat. United Nations conference on trade and development, United Nations, New York, USA.

    Google Scholar 

  • UniCredit. (2009). Study: Green shipping. HypoVereinsbank, Global shipping division, UniCredit Corporate Banking, Hamburg, Germany.

    Google Scholar 

  • Wang, Q., DeLucchi, M. A. (1991). Impact of electric vehicles on primary energy consumption and petroleum displacement. Working Paper UCTC No. 6, University of California Transport Center, University of California Berkeley, Berkeley, USA.

    Google Scholar 

  • Wang, G., Ogden, J. M., & Sperling, D. (2008). Comparing air quality impacts of hydrogen and gasoline. Transportation Research D, 13(7), 436–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Janić .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Janić, M. (2014). Advanced Transport Systems: Technologies and Environment. In: Advanced Transport Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6287-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6287-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6286-5

  • Online ISBN: 978-1-4471-6287-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics