Skip to main content

Coupled Biomechanical Modeling of the Face, Jaw, Skull, Tongue, and Hyoid Bone

  • Chapter
  • First Online:
3D Multiscale Physiological Human

Abstract

The tissue scale is an important spatial scale for modeling the human body. Tissue-scale biomechanical simulations can be used to estimate the internal muscle stresses and bone strains during human movement, as well as the distribution of force in muscles with complex internal architecture and broad insertion areas. Tissue-scale simulations are of particular interest for muscle structures where the changes in the shape of the structure are functionally important, such as the face, tongue, and vocal tract. Biomechanical modeling of these structures has potential to improve our understanding of orofacial physiology in respiration, mastication, deglutition, and speech production. Biomechanical simulations of the face and vocal tract pose a challenging engineering problem due to the tight coupling of tissue dynamics between numerous structures: the face, lips, jaw, skull, tongue, hyoid bone, soft palate, pharynx, and larynx. In this chapter, we describe our efforts to develop novel tissue-scale modeling and simulation techniques targeted to orofacial anatomy. We will also review our efforts to apply such simulations to reveal the biomechanics underlying orofacial movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007). Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950.

    Article  Google Scholar 

  2. Blemker, S. S., Asakawa, D. S., Gold, G. E., & Delp, S. L. (2007). Image-based musculoskeletal modeling: Applications, advances, and future opportunities. Journal of Magnetic Resonance Imaging, 25(2), 441–451.

    Article  Google Scholar 

  3. Terzopoulos, D., & Waters, K. (1990). Physically-based facial modelling, analysis, and animation. The Journal of Visualization and Computer Animation, 1(2), 73–80.

    Article  Google Scholar 

  4. Sifakis, E., Neverov, I., & Fedkiw, R. (2005). Automatic determination of facial muscle activations from sparse motion capture marker data. In ACM Transactions on Graphics (TOG), ACM (Vol. 24, pp. 417–425).

    Google Scholar 

  5. Hung, A. P. L., Wu, T., Hunter, P., & Mithraratne, K. (2011). Simulating facial expressions using anatomically accurate biomechanical model. In SIGGRAPH Asia 2011 Posters, ACM, p. 29.

    Google Scholar 

  6. Gerard, J. M., Perrier, P., & Payan, Y. (2006). 3d biomechanical tongue modeling to study speech production. In Speech production: Models, phonetic processes, and techniques (pp. 85–102). New York: Psychology Press.

    Google Scholar 

  7. Buchaillard, S., Perrier, P., & Payan, Y. (2009). A biomechanical model of cardinal vowel production: Muscle activations and the impact of gravity on tongue positioning. The Journal of the Acoustical Society of America, 126(4), 2033–2051.

    Article  Google Scholar 

  8. Stavness, I., Lloyd, J. E., Payan, Y., & Fels, S. (2011). Coupled hard-soft tissue simulation with contact and constraints applied to jaw-tongue-hyoid dynamics. International Journal for Numerical Methods in Biomedical Engineering, 27(3), 367–390.

    Article  MATH  Google Scholar 

  9. Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2011). Shaping by stiffening: A modeling study for lips. Motor Control, 15(1), 141–168.

    Google Scholar 

  10. Stavness, I., Nazari, M. A., Perrier, P., Demolin, D., & Payan, Y. (2013). A biomechanical modeling study of the effects of the orbicularis oris muscle and jaw posture. Journal of Speech, Language, and Hearing Research, 56, 878–890.

    Article  Google Scholar 

  11. Flynn, C., Stavness, I., Lloyd, J. E., & Fels, S. (2013a). A finite element model of the face including an orthotropic skin model under in vivo tension. Computer Methods in Biomechanics and Biomedical Engineering (in press).

    Google Scholar 

  12. Zhang, Q., Liu, Z., Quo, G., Terzopoulos, D., & Shum, H. Y. (2006). Geometry-driven photorealistic facial expression synthesis. IEEE Transactions on Visualization and Computer Graphics, 12(1), 48–60.

    Article  Google Scholar 

  13. Mori, M., MacDorman, K., & Kageki, N. (2012). The uncanny valley (from the field). IEEE Robotics & Automation Magazine, 19(2), 98–100.

    Article  Google Scholar 

  14. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., & Gross, M. (2011). High-quality passive facial performance capture using anchor frames. In: ACM Transactions on Graphics (TOG), ACM (Vol. 30, p. 75).

    Google Scholar 

  15. Hannam, A. (2011). Current computational modelling trends in craniomandibular biomechanics and their clinical implications. Journal of Oral Rehabilitation, 38(3), 217–234.

    Article  Google Scholar 

  16. Chabanas, M., Luboz, V., & Payan, Y. (2003). Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Medical Image Analysis, 7(2), 131–151.

    Article  Google Scholar 

  17. Mollemans, W., Schutyser, F., Nadjmi, N., Maes, F., Suetens, P., et al. (2007). Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Medical Image Analysis, 11(3), 282–301.

    Article  Google Scholar 

  18. Claes, P., Vandermeulen, D., De Greef, S., Willems, G., Clement, J. G., & Suetens, P. (2010). Computerized craniofacial reconstruction: conceptual framework and review. Forensic science international, 201(1), 138–145.

    Article  Google Scholar 

  19. Rohner, D., Guijarro-Martinez, R., Bucher, P., & Hammer, B. (2013). Importance of patient specific intraoperative guides in complex maxillofacial reconstruction. Journal of Cranio-Maxillofacial Surgery, 41(5), 382–390.

    Article  Google Scholar 

  20. Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2010). Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation. Computer Methods in Biomechanics and Biomedical Engineering, 13(4), 469–482.

    Article  Google Scholar 

  21. Hannam, A. G., Stavness, I., Lloyd, J. E., & Fels, S. (2008). A dynamic model of jaw and hyoid biomechanics during chewing. Journal of Biomechanics, 41(5), 1069–1076.

    Article  Google Scholar 

  22. Peck, C., Langenbach, G., Hannam, A., et al. (2000). Dynamic simulation of muscle and articular properties during human wide jaw opening. Archives of Oral Biology, 45(11), 963–982.

    Article  Google Scholar 

  23. Bucki, M., Lobos, C., & Payan, Y. (2010a). A fast and robust patient specific finite element mesh registration technique: Application to 60 clinical cases. Medical Image Analysis, 14(3), 303–317.

    Article  Google Scholar 

  24. Bucki, M., Nazari, M. A., & Payan, Y. (2010b). Finite element speaker-specific face model generation for the study of speech production. Computer Methods in Biomechanics and Biomedical Engineering, 13(4), 459–467.

    Article  Google Scholar 

  25. Flynn, C., Taberner, A., Nielsen, P., & Fels, S. (2013). Simulating the three-dimensional deformation of in vivo facial skin. Journal of the Mechanical Behavior of Biomedical Materials, 28, 484–494.

    Google Scholar 

  26. Schiavone, P., Promayon, E., & Payan, Y. (2010). Lastic: A light aspiration device for in vivo soft tissue characterization. Lecture Notes in Computer Science, 5958, 1–10.

    Google Scholar 

  27. Blemker, S. S., Pinsky, P. M., & Delp, S. L. (2005). A 3d model of muscle reveals the causes of nonuniform strains in the biceps brachii. Journal of Biomechanics, 38(4), 657–665.

    Article  Google Scholar 

  28. Weiss, J. A., Maker, B. N., & Govindjee, S. (1996). Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 135(1), 107–128.

    Article  MATH  Google Scholar 

  29. Gerard, J. M., Ohayon, J., Luboz, V., Perrier, P., & Payan, Y. (2005). Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique: Application to the biomechanics of speech production. Medical Engineering & Physics, 27(10), 884–892.

    Article  Google Scholar 

  30. Mooney, M. (1940). A theory of large elastic deformation. Journal of applied physics, 11(9), 582–592.

    Article  MATH  Google Scholar 

  31. Rivlin R (1948) Large elastic deformations of isotropic materials. iv. Further developments of the general theory. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 241(835), 379–397.

    Google Scholar 

  32. Fung, Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissues. New York: Springer.

    Book  Google Scholar 

  33. Borges, A. F. (1984). Relaxed skin tension lines (rstl) versus other skin lines. Plastic and Reconstructive Surgery, 73(1), 144–150.

    Article  MathSciNet  Google Scholar 

  34. Lloyd, J. E., Stavness, I., Fels, S. (2012). ArtiSynth: A fast interactive biomechanical modeling toolkit combining multibody and finite element simulation. In Y. Payan (Ed.), Soft tissue biomechanical modeling for computer assisted surgery (Vol. 11, pp. 355–394). New York: Springer.

    Google Scholar 

  35. MacNeilage, P. F., & Davis, B. L. (2000). On the origin of internal structure of word forms. Science, 288(5465), 527–531.

    Article  Google Scholar 

  36. Stavness, I., & Kim, S. (2013). Towards a multi-compartment finite-element model of the supraspintus muscle (pp. 115–116). In Computer Methods in Biomechanics and Biomedical Engineering.

    Google Scholar 

Download references

Acknowledgments

We gratefully thank Pierre Badin at Gipsa-Lab Grenoble for providing the CT data used for subject specific morphology. We also thank Poul Nielson and collaborators at the Auckland Bioengineering Institute for their assistance with the subject-specific material properties experiments. We also thank ANSYS for making licenses available. Funding for this work has been provided by the Natural Science and Engineering Research Council of Canada and the Michael Smith Foundation for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Stavness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Stavness, I. et al. (2014). Coupled Biomechanical Modeling of the Face, Jaw, Skull, Tongue, and Hyoid Bone. In: Magnenat-Thalmann, N., Ratib, O., Choi, H. (eds) 3D Multiscale Physiological Human. Springer, London. https://doi.org/10.1007/978-1-4471-6275-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6275-9_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6274-2

  • Online ISBN: 978-1-4471-6275-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics