Skip to main content

A Biomechanical Approach for Dynamic Hip Joint Analysis

  • Chapter
  • First Online:
Book cover 3D Multiscale Physiological Human

Abstract

Hip osteoarthritis (OA) is one of the most common forms of musculoskeletal disorders. Although different factors have been identified as potential causes of the labral tear and cartilage degeneration, the exact pathogenesis for idiopathic OA is still not completely delineated. Given the crucial role of the mechanical behavior in the degenerative process, analyzing the contact mechanics in the articular layers during activities could contribute to the understanding of the pathology. This paper presents subject-specific and non-invasive methods which jointly encompass anatomy, kinematics and dynamics. This unique combination offers new ways to individualize the diagnostic by using a physically-based simulation of articular layers during motion. The simulation results showed that strong deformations and peak stresses were observed in extreme hip postures. Medical experts correlated these simulation findings with the locations of detected abnormalities. These observations strongly suggest that extreme and repetitive stresses within the joint could lead to early hip OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arthritis foundation, http://www.arthritis.org.

  2. Bevan, S., McGee, R., & Quadrello, T. (2009). Key findings of the fit for work europe report on musculoskeletal disorders and work. Occupational Health at Work 2009 (Vol. 6, pp. 30–30). The At Work Partnership.

    Google Scholar 

  3. Bergmann, S. G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., et al. (2001). Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34, 859–871.

    Article  Google Scholar 

  4. Standring, S. (2005). Gray’s anatomy: The anatomical basis of clinical practice (39th ed.). Edinburgh: Elsevier.

    Google Scholar 

  5. Duthon, V., Menetrey, J., Kolo-Christophe, F., Charbonnier, C., Duc, S., Pfirrmann, C. et al. (2009). Professional dancers hip: Correlation of clinical and mri findings. In Swiss Medical Weekly (Vol. 139, pp. 23–24). Switzerland: EMH.

    Google Scholar 

  6. McCarthy, J. C., Noble, P. C., Schuck, M. R., Wright, J., Lee, J., & Waterman, M. S. (2009). The Otto E Aufranc Award the role of labral lesions to development of early degenerative hip disease. Clinical Orthopaedics, 393, 25–37.

    Article  Google Scholar 

  7. Tannast, M., Goricki, D., Beck, M., Murphy, S., & Siebenrock, K. (2008). Hip damage occurs at the zone of femoroacetabular impingement. Journal of Clinical Orthopaedics Related Research, 466, 273–280.

    Article  Google Scholar 

  8. Russell, M., Shivanna, K., Grosland, N., & Pedersen, D. (2006). Cartilage contact pressure elevations in dysplastic hips: A chronic overload model. Journal of Orthopaedic Surgery and Research, 1, 169–177.

    Article  Google Scholar 

  9. Kelly, B. T., Weiland, D. E., Schenker, M. L., & Philippon, M. J. (2005). Arthroscopic labral repair in the hip: surgical technique and review of the literature. Arthroscopy, 21, 496–504.

    Google Scholar 

  10. Macirowski, T., Tepic, S., & Mann, R. W. (1994). Cartilage stresses in the human hip joint. Journal of Biomechanical Engineering, 116, 10–18.

    Article  Google Scholar 

  11. Pool, A. R. (1995). Imbalances of anabolism and catabolism of cartilage matrix components in osteoarthritis. In V. M. Goldberg & K. E. Kuettner (Eds.), Osteoarthritic Disorder (pp. 247–260). Rosemont: American Association of Orthopaedic Surgeons.

    Google Scholar 

  12. Narvani, A. A., Tsiridis, E., Tai, C. C., & Thomas, P. (2003). Acetabular labrum and its tears. British Journal of Sports Medicine, 37, 207–211.

    Article  Google Scholar 

  13. Narvani A. A., Tsiridis, E., Kendall. S., Chaudhuri, R., & Thomas, P. (2003). A preliminary report on prevalence of acetabular labrum tears in sports patients with groin pain. Knee Surgery, Arthroscopy and Sports Traumatology, 11, 403–408.

    Google Scholar 

  14. Bharam, S. (2006). Labral tears, extra-articular injuries, and hip arthroscopy in the athlete. Clinic Sports Medicine, 25, 279–292.

    Article  Google Scholar 

  15. Binningsley, D. (2003). Tear of the acetabular labrum in an elite athlete. British Journal of Sports Medicine, 37, 84–88.

    Article  Google Scholar 

  16. Anderson, A. E., Ellis, B. J., Maas, S. A., Peters, C. L., & Weiss, J. A. (2008). Validation of finite element predictions of cartilage contact pressure in the human hip joint. Journal of Biomechanical Engineering, 130, 1–10.

    Article  Google Scholar 

  17. Chegini, S., Beck, M., & Ferguson, S. (2008). The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: A finite element analysis. Journal of Orthopaedic Research, 27, 195–201.

    Article  Google Scholar 

  18. Byrd, J. W., Jones, K. S., Smith, T. F., & Waterman, M. S. (2000). Prospective analysis of hip arthroscopy with 2-year follow-up. Arthroscopy, 16, 578–587.

    Google Scholar 

  19. Brown, T. (1983). In vitro contact stress distributions in the natural human hip. Journal of Biomechanics, 16, 373–384.

    Article  Google Scholar 

  20. Ahmad, M. C., Cohen, Z., Levine, W., Ateshian, G., & Mow, V. (2001). Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. American Journal of Sports Medicine, 29, 201–206.

    Google Scholar 

  21. Hodge, W., Carlson, K., Fijan, R., Burgess, R., Riley, P., Harris, W., et al. (1989). Contact pressures from an instrumented hip endoprostheses. Journal of Bone and Joint Surgery, 71, 1378–1386.

    Google Scholar 

  22. Xishi, W., Tianying, W., Fuchuan, J., & Yixiang, D. (2005). The hip stress level analysis for human routine activities. Biomedical Engineering: Applications, Basis and Communications, 17, 43–48.

    Google Scholar 

  23. Mavcic, B., Pompe, B., Antolic, V., Daniel, M., Iglic, A., & Kralj-Iglic, V. (2002). Mathematical estimation of stress distribution in normal and dysplastic human hips. Journal of Orthopaedic Research, 20, 1025–1030.

    Article  Google Scholar 

  24. Maciel, A., Sarni, S., Boulic, R., & Thalmann, D. (2005). Stress distribution visualization on pre- and post-operative virtual hip joint. In: Proceedings of Computer Assisted Orthopaedic Surgery (CAOS05) (pp. 298–301).

    Google Scholar 

  25. Ahmet, C., Vahdet, U., & Recep, K. (2007). Three-dimensional anatomic finite element modelling of hemi-arthroplasty of human hip joint. Trends in Biomaterials and Artificial Organs, 21, 63–72.

    Google Scholar 

  26. Harris, M. D., Anderson, A. E., Henak, C. R., Ellis, B. J., Peters, C. L., & Weiss, J. A. (2012). Finite element prediction of cartilage contact stresses in normal human hips. Journal of Orthopaedic Research, 30(7), 1133–1139.

    Article  Google Scholar 

  27. Henak, C. R., Anderson, A. E., & Weiss, J. A. (2013). Subject-specific analysis of joint contact mechanics: Application to the study of osteoarthritis and surgical planning. Journal of Biomechanical Engineering, 135(2), in press.

    Google Scholar 

  28. Magnenat-Thalmann, N., Charbonnier, C., & Schmid, J. (2008). Multimedia application to the simulation of human musculoskeletal system: A visual lower limb model from multimodal captured data. In: Proceedings of IEEE International Workshop in Signal Processing (pp. 520–525).

    Google Scholar 

  29. Schmid, J., Kim, J., & Magnenat-Thalmann, N. (2011). Robust statistical shape models for mri bone segmentation in presence of small field of view. Medical Image Analysis, 15, 155–168.

    Article  Google Scholar 

  30. Gilles, B., & Magnenat-Thalmann, N. (2010). Musculoskeletal mri segmentation using multi-resolution simplex meshes with medial representations. Medical Image Analysis, 14, 291–302.

    Article  Google Scholar 

  31. Schmid, J., & Magnenat-Thalmann, N. (2008). Mri bone segmentation using deformable models and shape priors. In: Proceedings of International Conference Medical image Computing and Computer Assisted Intervention (MICCAI) (Vol. 5241, pp. 119–126). Heidelberg: Springer.

    Google Scholar 

  32. Volino, P., & Magnenat-Thalmann, N. (2005). Implicit midpoint integration and adaptive damping for efficient cloth simulation. Computer Animation and Virtual Worlds, 16, 163–175.

    Article  Google Scholar 

  33. Schmid, J., Sandholm, S., Chung, F., Thalmann, D., Delingette, H., & Magnenat-Thalmann, N. (2009) Musculoskeletal simulation model generation from mri datasets and motion capture data. In: Recent advances in the 3D Physiological Human (pp. 3–20). Heidelberg: Springer.

    Google Scholar 

  34. Shephard, M., & Georges, M. (1991). Three-dimensional mesh generation by finite octree technique. International Journal for Numerical Methods in Engineering, 32, 709–749.

    Article  MATH  Google Scholar 

  35. Lohner, R. (1996). Progress in grid generation via the advancing front technique. Engineering with Computers, 39, 501–511.

    Google Scholar 

  36. Alliez, P., Cohen-Steiner, D., Yvinec, M., & Desbrun, M. (2005). Variational tetrahedral meshing. In: SIGGRAPH05 (pp. 193–204).

    Google Scholar 

  37. Assassi, L., Charbonnier, C., Schmid, J., Volino, P., & Magnenat-Thalmann, N. (2009). From mri to anatomical simulation of the hip joint. Computer Animation Virtual World, 20, 53–66.

    Article  Google Scholar 

  38. Assassi, L., Guillard., G., Gilles., B., & Magnenat-Thalmann, N. (2007). Volumetric meshes based on medial representation for medical applications. In: Proceedings of Computer Assisted Orthopaedic Surgery (CAOS07) (pp. 259–262).

    Google Scholar 

  39. Magnenat-Thalmann, N., Schmid, J., Assassi, L., & Volino, P. (2010). A comprehensive methodology to visualize articulations for the physiological human. In: Cyberworlds. IEEE Computer Society (pp. 1–8).

    Google Scholar 

  40. Molino, N., Bridson, R., Teran, J., & Fedkiw, R. (2003). A crystalline red green strategy for meshing highly deformable object with tetrahedral. In: Proceedings of the 12th International Meshing Roundtable (pp. 103–114).

    Google Scholar 

  41. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., et al. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion- part I: Ankle, hip and spine. Journal of Biomechanics, 35, 543–548.

    Google Scholar 

  42. Gilles, B., Kolo-Christophe, F., Magnenat-Thalmann, N., Becker, C., Duc, S., Menetrey, J., et al. (2009). Mri-based assessment of hip joint translations. Journal of Biomechanics, 12, 1201–1205.

    Article  Google Scholar 

  43. Benoit, D., Ramsey, D., Lamontagne, M., Xu, L., Wretenberg, P., & Renstroem, P. (2006). Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait and Posture, 24, 152–164.

    Article  Google Scholar 

  44. Cappozzo, A., Catani, F., Leardini, A., Benedetti, M., & Croce, U. D. (1996). Position and orientation in space of bones during movement: experimental artefacts. Clinical Biomechanics, 11, 90–100.

    Article  Google Scholar 

  45. Garling, E., Kaptein, B., Mertens, B., Barendregt, W., Veeger, H., Nelissen, R., et al. (2007). Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics, 40, 18–24.

    Article  Google Scholar 

  46. Kepple, T., Arnold, A., Stanhope, S., & Siegel, K. (1994). Assessment of a method to estimate muscle attachments from surface landmarks: A 3d computer graphics approach. Journal of Biomechanics, 27, 365–371.

    Article  Google Scholar 

  47. Lawrence, C., & Tits, A. (2001). A computationally efficient feasible sequential quadratic programming algorithm. SIAM Journal on Optimization, 11, 1092–1118.

    Article  MATH  MathSciNet  Google Scholar 

  48. Charbonnier, C., Assassi, L., Volino, P., & Magnenat-Thalmann, N. (2009). Motion study of the hip joint in extreme postures. The Visual Computer, 25, 873–882.

    Article  Google Scholar 

  49. Charbonnier, C., Lyard, E., & Magnenat-Thalmann, N. (2008). Analysis of extreme hip motion in professional ballet dancers. In: Proceedings of 10th International Symposium of 3D Analysis of Human Movement. Amsterdam.

    Google Scholar 

  50. Park, S., Krebs, D., & Mann, R. (1999). Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation. Gait and Posture, 10, 311–322.

    Google Scholar 

  51. Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. (2007). Model based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22, 131–154.

    Article  Google Scholar 

  52. Damsgaard, M., Rasmussen, J., Christensen, S., Surma, E., & de Zee, M. (2006). Analysis of musculoskeletal systems in the anybody modeling system. Simulation Modelling Practice and Theory, 14, 1100–1111.

    Article  Google Scholar 

  53. Delp, S., Loan, J., Hoy, M., Zajac, F., Topp, E., & Rosen, J. (1990). An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 37, 757–767.

    Article  Google Scholar 

  54. Piazza, S., & Delp, S. (1996). The influence of muscles on knee flexion during the swing phase of gait. Journal of Biomechanics, 29, 723–733.

    Article  Google Scholar 

  55. Fox, M., Reinbolt, J., Unpuu, S., & Delp, S. (2009). Mechanisms of improved knee flexion after rectus femoris transfer surgery. Journal of Biomechanics, 42, 614–619.

    Article  Google Scholar 

  56. Rasmussen, J., & de Zee, M. (2008). Design optimization of airline seats. SAE International Journal of Passenger Cars—Electronic and Electrical Systems, 1, 580–584.

    Google Scholar 

  57. Sandholm, A., Pronost, N., & Thalmann, D. (2009). Motionlab: A matlab toolbox for extracting and processing experimental motion capture data for neuromuscular simulations. In: Proceedings of the Second 3D Physiological Human, Workshop (3DPH) (Vol. 5903).

    Google Scholar 

  58. Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., et al. (2007). Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54, 1940–1950.

    Article  Google Scholar 

  59. Irving, G., Teran, J., & Fedkiw, R. (2004). Invertible finite elements for robust simulation of large deformation. In: ACM SIGGRAPH’04 (Vol. 131, pp. 131–140). ACM Press.

    Google Scholar 

  60. Volino P., Magnenat-Thalmann, N., & Faure, F. (2009). A Simple Approach to nonlinear tensile stiffness for accurate cloth simulation. In: ACM Transactions on Graphics (Vol. 28, pp. 105–116). ACM Press.

    Google Scholar 

  61. Volino, P., & Magnenat-Thalmann, N. (2007). Stop-and-go cloth draping. Visual Computer, 23, 669–677.

    Article  Google Scholar 

  62. Finite Element Software: FEBio, http://mrl.sci.utah.edu/software.php

  63. SOFA:Simulation Open-Framework Architecture, http://www.sofa-framework.org

  64. Finite Element Software:Code-Aster, http://www.code-aster.org

  65. Pfirrmann, C., Mengiardi, B., Dora, C., Kalberer, F., Zanetti, M., & Hodler, J. (2006). Cam and pincer femoroacetabular impingement: Characteristic mr arthrographic findings in 50 patients. Journal of Radiology, 240, 778–785.

    Google Scholar 

  66. Dalstra, M., Huiskes, R., & Van-Erning, L. (1995). Development and validation of a three-dimensional finite element model of the pelvic bone. Journal of Biomechanical Engineering, 117, 272–278.

    Article  Google Scholar 

  67. Park, S., Hung, C., & Ateshian, G. (2004). Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage, 12, 65–73.

    Article  MATH  Google Scholar 

  68. Ferguson, S., Bryant, J., & Ito, K. (2001). The material properties of the bovine acetabular labrum. Journal of Orthopaedic Research, 19, 887–896.

    Article  Google Scholar 

  69. Henak, C. R., Ellis, B. J., Harris, M. D., Anderson, A. E., Peters, C. L., & Weiss, J. A. (2011). Role of the acetabular labrum in load support across the hip joint. Journal of Biomechanics, 44, 2201–2206.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the University Hospital of Geneva and the ballet dancers of the great theater of Geneva for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazhari Assassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Assassi, L., Magnenat-Thalmann, N. (2014). A Biomechanical Approach for Dynamic Hip Joint Analysis. In: Magnenat-Thalmann, N., Ratib, O., Choi, H. (eds) 3D Multiscale Physiological Human. Springer, London. https://doi.org/10.1007/978-1-4471-6275-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6275-9_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6274-2

  • Online ISBN: 978-1-4471-6275-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics