Overview of Scheduling Methods

  • Jose M. FraminanEmail author
  • Rainer Leisten
  • Rubén Ruiz García


In the previous part of the book, we have presented the concept of a scheduling model as a way to formalise the decision-making scheduling problem. This part of the book is devoted to present the methods to provide (good or even optimal) solutions for these scheduling models. In this chapter, we give an overview of scheduling methods, leaving for the next chapters the detailed discussion of specialised methods.


Schedule Problem Schedule Model Schedule Method Short Processing Time Constructive Heuristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arora, S. and Barak, B. (2009). Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge.Google Scholar
  2. Baker, K. R. (1974). Introduction to Sequencing and Scheduling. John Wiley & Sons, New York.Google Scholar
  3. Baker, K. R. and Trietsch, D. (2009). Principles of Sequencing and Scheduling. Wiley, New York.Google Scholar
  4. Bamberg, G. and Baur, F. (1998). Statistik. Oldenbourg, Muenchen, Wien.Google Scholar
  5. Berenson, M. L., Levine, D. M., and Krehbiel, T. C. (2006). Basic business statistics: Concepts and applications. Pearson Education, Upper Saddle River, NJ.Google Scholar
  6. Blackstone, Jr, J. H., Phillips, D. T., and Hogg, G. L. (1982). A state-of-the-art survey of dispatching rules for manufactuing job shop operations. International Journal of Production Research, 20(1):27–45.Google Scholar
  7. Błazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., and Wȩglarz, J. (2002). Scheduling Computer and Manufacturing Processes. Springer-Verlag, Berlin, second edition.Google Scholar
  8. Błazewicz, J., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1983). Scheduling Subject to Constraints: Classification and Complexity. Discrete Applied Mathematics, 5:11–24.Google Scholar
  9. Brucker, P. (2007). Scheduling Algorithms. Springer, New York, fifth edition.Google Scholar
  10. Brucker, P. and Knust, S., editors (2006). Complex Scheduling. Springer-Verlag, Berlin.Google Scholar
  11. Conway, R. W., Maxwell, W. L., and Miller, L. W. (1967). Theory of Scheduling. Dover Publications, New York. Unabridged publication from the 1967 original edition published by Addison-Wesley.Google Scholar
  12. Domschke, W., Scholl, A., and Voss, S. (1997). Produktionsplanung: Ablauforganisatorische Aspekte. Springer, Berlin. 2nd, revised and upgraded edition.Google Scholar
  13. Du, J. and Leung, J. Y. T. (1990). Minimising total tardiness on one machine is NP-hard. Mathematics of Operations Research, 15(3):483–495.Google Scholar
  14. French, S. (1982). Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop. Ellis Horwood Limited, Chichester.Google Scholar
  15. Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York.Google Scholar
  16. Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The Complexity of Flowshop and Jobshop Scheduling. Mathematics of Operations Research, 1(2):117–129.Google Scholar
  17. Groetschel, M. and Lovasz, L. (1993). Geometric algorithms and combinatorial optimization. Springer, Berlin [a.o.]. 2th, corrected edition.Google Scholar
  18. Haupt, R. (1989). A survey or priority rule-based scheduling. OR Spectrum, 11(1):3–16.Google Scholar
  19. Jayamohan, M. S. and Rajendran, C. (2000). New dispatching rules for shop scheduling: a step forward. International Journal of Production Research, 38(3):563–586.Google Scholar
  20. Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1993). Sequencing and Scheduling: Algorithms and Complexity. In Graves, S. C., Rinnooy Kan, A. H. G., and Zipkin, P. H., editors, Logistics of Production and Inventory, volume 4 of Handbooks in Operations Research and Management Science, Amsterdam. Elsevier Science Publishers, B. V.Google Scholar
  21. Montgomery, D. C. (2012). Design and Analysis of Experiments. Wiley; 8 edition.Google Scholar
  22. Morton, T. E. and Pentico, D. W. (1993). Heuristic Scheduling Systems With Applications to Production Systems and Project Management. Wiley Series in Engineering & Technology Management. John Wiley & Sons, Hoboken.Google Scholar
  23. Panwalkar, S. and Iskander, W. (1977). A survey of scheduling rules. Operations Research, 25(1):47–55.Google Scholar
  24. Papadimitriou, C. H. (1993). Computational Complexity. Addison-Wesley, Reading.Google Scholar
  25. Papadimitriou, C. H. and Kanellakis, P. C. (1980). Flowshop scheduling with limited temporary-storage. Journal of the ACM, 27(3):533–549.Google Scholar
  26. Pinedo, M. (2009). Planning and Scheduling in Manufacturing and Services. Springer, New York, second edition.Google Scholar
  27. Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems. Springer, New York, fourth edition.Google Scholar
  28. Rajendran, C. and Holthaus, O. (1999). A comparative study of dispatching rules in dynamic flowshops and jobshops. European Journal of Operational Research, 116(1):156–170.Google Scholar
  29. Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems: Classification, Complexity and Computations. Martinus Nijhoff, The Hague.Google Scholar
  30. Urlings, T., Ruiz, R., and Sivrikaya-Şerifoğlu, F. (2010). Genetic algorithms with different representation schemes for complex hybrid flexible flow line problems. International Journal of Metaheuristics, 1(1):30–54.Google Scholar
  31. Vepsalainen, A. P. J. and Morton, T. E. (1987). Priority rules and lead time estimation for job shop scheduling with weighted tardiness costs. Management Science, 33(8):1036–1047.Google Scholar
  32. Watson, J.-P., Barbulescu, L., Whitley, L., and Howe, A. (2002). Contrasting structured and random permutation flow-shop scheduling problems: Search-space topology and algorithm performance. INFORMS Journal on Computing, 14:98–123.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Jose M. Framinan
    • 1
    Email author
  • Rainer Leisten
    • 2
  • Rubén Ruiz García
    • 3
  1. 1.Departamento Organización Industrial y Gestión de EmpresasUniversidad de Sevilla Escuela Superior de IngenierosIsla de la CartujaSpain
  2. 2.Fakultät für Ingenieurwissenschaften Allgemeine Betriebswirtschaftslehre und Operations ManagementUniversität Duisburg-EssenDuisburgGermany
  3. 3.Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de InformáticaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations