Advertisement

Overview of Scheduling Models

  • Jose M. Framinan
  • Rainer Leisten
  • Rubén Ruiz García
Chapter

Abstract

As it has been discussed in a previous chapter (see Sect.  1.5), scheduling refers to a decision-making process in which, in order to solve a real-world problem, a formal model is obtained.

Keywords

Parallel Machine Single Machine Flow Shop Schedule Model Open Shop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Artiba, A. and Elmaghraby, S. E., editors (1997). The planning and scheduling of production systems: methodologies and applications. Chapman & Hall, London.Google Scholar
  2. Baker, K. R. (1974). Introduction to Sequencing and Scheduling. John Wiley & Sons, New York.Google Scholar
  3. Baker, K. R. and Trietsch, D. (2009). Principles of Sequencing and Scheduling. Wiley, New York.Google Scholar
  4. Błazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., and Wȩglarz, J. (2002). Scheduling Computer and Manufacturing Processes. Springer-Verlag, Berlin, second edition.Google Scholar
  5. Błazewicz, J., Lenstra, J. K., and RinnooyKan, A. H. G. (1983). Scheduling Subject to Constraints: Classification and Complexity. Discrete Applied Mathematics, 5:11–24.Google Scholar
  6. Brahimi, N., Dauzère-Pérès, S., Najid, N. M., and Nordli, A. (2006). Single item lot sizing problems. European Journal of Operational Research, 168(1):1–16.Google Scholar
  7. Brucker, P. (2007). Scheduling Algorithms. Springer, New York, fifth edition.Google Scholar
  8. Chang, J. H. and Chiu, H. N. (2005). Comprehensive review of lot streaming. International Journal of Production Research, 43(8):1515–1536.Google Scholar
  9. Churchman, C. W. (1984). The Systems Approach. Dell Publishing Company, New York. Revised and upgraded edition from the 1968 original.Google Scholar
  10. Coffman, E. G. (1976). Computer & Job/shop Scheduling Theory. John Wiley & Sons.Google Scholar
  11. Conway, R. W., Maxwell, W. L., and Miller, L. W. (1967). Theory of Scheduling. Dover Publications, New York. Unabridged publication from the 1967 original edition published by Addison-Wesley.Google Scholar
  12. DaCosta, N. and French, S. (2003). Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford University Press, Oxford.Google Scholar
  13. Drexl, A. and Kimms, A., editors (1998). Beyond Manufacturing Resource Planning (MRP II): advanced models and methods for production planning. Springer, New York.Google Scholar
  14. Dudek, R. A., Panwalkar, S. S., and Smith, M. L. (1992). The lessons of flowshop scheduling research. Operations Research, 40(1):7–13.Google Scholar
  15. French, S. (1982). Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop. Ellis Horwood Limited, Chichester.Google Scholar
  16. Gilbert, S. W. (1991). Model-building and a definition of science. Journal of Research in Science Teaching, 28(1):73–79.Google Scholar
  17. Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete Mathematics, 5:287–326.Google Scholar
  18. Higgins, P., Le Roy, P., and Tierney, L., editors (1996). Manufacturing planning and control: beyond MRP II. Springer, New York.Google Scholar
  19. Hyer, N. and Wemmerlöv, U. (2002). Reorganizing the Factory: Competing Through Cellular Manufacturing. Productivity Press, Portland.Google Scholar
  20. Irani, S. A., editor (1999). Handbook of Cellular Manufacturing Systems. Manufacturing & Automation Engineering. John Wiley & Sons, New York.Google Scholar
  21. Lawler, E. L., Lenstra, J. K., and RinnooyKan, A. H. G. (1993). Sequencing and Scheduling: Algorithms and Complexity. In Graves, S. C., RinnooyKan, A. H. G., and Zipkin, P. H., editors, Logistics of Production and Inventory, volume 4 of Handbooks in Operations Research and Management Science, Amsterdam. Elsevier Science Publishers, B. V.Google Scholar
  22. MacCarthy, B. L. and Liu, J. (1993). Addressing the gap in scheduling research: A review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1):59–79.Google Scholar
  23. Mayer, R. E. (1992). Knowledge and thought: Mental models that support scientific reasoning. In Duschl, R. A. and Hamilton, R. J., editors, Philosophy of science, cognitive psychology, and educational theory and practice, pages 226–243, Albany. New York State University.Google Scholar
  24. Morton, T. E. and Pentico, D. W. (1993). Heuristic Scheduling Sysmtems With Applications to Production Systems and Project Management. Wiley Series in Engineering & Technology Management. John Wiley & Sons, Hoboken.Google Scholar
  25. Onwubolu, G. C. (2002). Emerging optimization techniques in production planning and control. Imperial College Press, London.Google Scholar
  26. Orlicky, J. (1975). Material Requirements Planning. McGraw-Hill, New York.Google Scholar
  27. Pinedo, M. (2009). Planning and Scheduling in Manufacturing and Services. Springer, New York, second edition.Google Scholar
  28. Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems. Springer, New York, fourth edition.Google Scholar
  29. Plossl, G. W. (1994). Orlicky’s Material Requirements Planning. McGraw-Hill, New York, second edition.Google Scholar
  30. Pochet, Y. and Wolsey, L. A. (2006). Production planning by mixed integer programming. Springer, New York.Google Scholar
  31. Potts, C. N. and VanWassenhove, L. N. (1992). Integrating scheduling with batching and lot-sizing: A review of algorithms and complexity. The Journal of the Operational Research Society, 43(5):395–406.Google Scholar
  32. Proud, J. F. (2007). Master Scheduling: A Practical Guide to Competitive Manufacturing. Wiley, New York, third edition.Google Scholar
  33. RinnooyKan, A. H. G. (1976). Machine Scheduling Problems: Classification, Complexity and Computations. Martinus Nijhoff, The Hague.Google Scholar
  34. Sarin, S. C. and Jaiprakash, P. (2007). Flow Shop Lot Streaming. Springer, New York.Google Scholar
  35. Sheikh, K. (2003). Manufacturing resource planning (MRP II): with introduction to ERP, SCM and CRM. McGraw-Hill Professional, New York.Google Scholar
  36. Stadtler, H. and Kilger, C., editors (2005). Supply chain management and advanced planning: concepts, models, software and case studies. Springer, New York, third edition.Google Scholar
  37. Toomey, J. W. (1996). MRP II: planning for manufacturing excellence. Springer, New York.Google Scholar
  38. Trietsch, D. and Baker, K. R. (1993). Basic techniques for lot streaming. Operations Research, 41(6):1065–1076.Google Scholar
  39. Vignier, A., Billaut, J.-C., and Proust, C. (1999). Les problèmes d’ordonnancement de type flow-shop hybride: État de l’art. RAIRO Recherche opérationnelle, 33(2):117–183. In French.Google Scholar
  40. Voss, S. and Woodruff, D. L. (2003). Introduction to computational optimization models for production planning in a supply chain. Springer, New York.Google Scholar
  41. Wight, O. W. (1995). Manufacturing Resource Planning: MRP II: Unlocking America’s Productivity Potential. John Wiley & Sons, New York, second edition.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Jose M. Framinan
    • 1
  • Rainer Leisten
    • 2
  • Rubén Ruiz García
    • 3
  1. 1.Departamento Organización Industrial y Gestión de EmpresasUniversidad de Sevilla Escuela Superior de IngenierosIsla de la CartujaSpain
  2. 2.Fakultät für Ingenieurwissenschaften Allgemeine Betriebswirtschaftslehre und Operations ManagementUniversität Duisburg-EssenDuisburgGermany
  3. 3.Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de InformáticaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations