Skip to main content

Introduction

  • Chapter
  • 1702 Accesses

Abstract

For understanding the objective and contents of this book, this chapter first introduces underactuated robotic systems and presents many examples and some special features of these systems, then discusses some important problems of control design and analysis for these systems. Finally, the main contents of each chapter of this book and recommended flow chart for reading this book are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arai, H., Tachi, S.: Position control of manipulator with passive joints using dynamic coupling. IEEE Trans. Robot. Autom. 7(4), 528–534 (1991)

    Article  Google Scholar 

  2. Arai, H., Tanie, K., Shiroma, N.: Nonholonomic control of a three-DOF planar underactuated manipulator. IEEE Trans. Robot. Autom. 14(5), 681–695 (1998)

    Article  Google Scholar 

  3. Arikawa, K., Mita, T.: Design of multi-DOF jumping robot. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 3992–3997 (2002)

    Google Scholar 

  4. Asano, F., Luo, Z.W.: Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation. IEEE Trans. Robot. 24(6), 1289–1301 (2008)

    Article  Google Scholar 

  5. Bicchi, A., Goldberg, K.Y.: Minimalism in robot manipulation. In: Lecture Notes, Workshop in IEEE International Conference on Robotics and Automation (1996)

    Google Scholar 

  6. Bloch, A.M., Reyhanoglu, M., McClamroch, N.H.: Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Autom. Control 37(11), 1746–1757 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brockett, R.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Milman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhäuser, Basel (1983)

    Google Scholar 

  8. Chemori, A., Marchand, N.: A prediction-based nonlinear controller for stabilization of a non-minimum phase PVTOL aircraft. Int. J. Robust Nonlinear Control 18(8), 876–889 (2008)

    Article  MathSciNet  Google Scholar 

  9. De Luca, A., Oriolo, G.: Trajectory planning and control for planar robots with passive last joint. Int. J. Robot. Res. 21(5–6), 575–590 (2002)

    Article  Google Scholar 

  10. De Luca, A., Mattone, R., Oriolo, G.: Stabilization of an underactuated planar 2R manipulator. Int. J. Robust Nonlinear Control 10(4), 181–198 (2000)

    Article  MATH  Google Scholar 

  11. De Luca, A., Iannitti, S., Mattone, R., Oriolo, G.: Control problems in underactuated manipulators. In: Proceedings of the 2001 IEEE/ASME International Conference on Advanced Mechatronics, pp. 855–861 (2001)

    Google Scholar 

  12. Do, K.D., Jiang, Z.P., Pan, J.: On global tracking control of a VTOL aircraft without velocity measurements. IEEE Trans. Autom. Control 48(12), 2212–2217 (2005)

    Article  MathSciNet  Google Scholar 

  13. Fantoni, I., Lozano, R.: Non-linear Control for Underactuated Mechanical Systems. Springer, Berlin (2001)

    Google Scholar 

  14. Fantoni, I., Lozano, R., Spong, M.W.: Energy based control of the Pendubot. IEEE Trans. Autom. Control 45(4), 725–729 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fierro, R., Lewis, F.: Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. In: Proceedings of the 34th IEEE Conference on Decision and Control, pp. 3805–3810 (1995)

    Google Scholar 

  16. Hauser, J., Murray, R.M.: Nonlinear controllers for non-integrable systems: The Acrobot example. In: Proceedings of the 1990 American Control Conference, pp. 669–671 (1990)

    Google Scholar 

  17. Hyon, S., Yokoyama, N., Emura, T.: Back handspring of a multi-link gymnastic robot reference model approach. Adv. Robot. 20(1), 93–113 (2006)

    Article  Google Scholar 

  18. Jankovic, M., Fontaine, D., Kokotovic, P.V.: TORA example: Cascade- and passivity-based control designs. IEEE Trans. Control Syst. Technol. 4(3), 292–297 (1996)

    Article  Google Scholar 

  19. Jiang, Z., Nijmeijer, H.: Tracking control of mobile robots: A case study in backstepping. Automatica 33(7), 1393–1399 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jiang, Z.P.: Controlling underactuated mechanical systems: A review and open problems. In: Advances in the Theory of Control, Signals and Systems with Physical Modeling, pp. 77–88. Springer, Berlin (2011)

    Google Scholar 

  21. Kobayashi, K., Yoshikawa, T.: Controllability of under-actuated planar manipulators with one unactuated joint. Int. J. Robot. Res. 21(5–6), 555–561 (2002)

    Article  Google Scholar 

  22. Kolesnichenko, O., Shiriaev, A.S.: Partial stabilization of underactuated Euler–Lagrange systems via a class of feedback transformations. Syst. Control Lett. 45(2), 121–132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. Mag. 15(6), 20–36 (1995)

    Article  Google Scholar 

  24. Kolmanovsky, I., McClamroch, N.H., Coppola, V.T.: Exact tracking for a planar multilink in space using internal actuation. In: Proceedings of the 1994 American Control Conference, pp. 143–147 (1994)

    Chapter  Google Scholar 

  25. Krishnan, H., Reyhanoglu, M., McClamroch, H.: Attitude stabilization of a rigid spacecraft using two control torques: A nonlinear control approach based on the spacecraft attitude dynamics. Automatica 30(6), 1023–1027 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lam, S., Davison, E.J.: The real stabilizability radius of the multi-link inverted pendulum. In: Proceedings of the 2006 American Control Conference, pp. 1814–1819 (2006)

    Google Scholar 

  27. Li, Z., Montgomery, R.: Dynamics and optimal control of a legged robot in flight phase. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation, pp. 1816–1821 (1990)

    Google Scholar 

  28. Lynch, K., Shiroma, N., Arai, H., Tanie, K.: Collision-free trajectory planning for a 3-DOF robot with a passive joint. Int. J. Robot. Res. 19(12), 1171–1184 (2000)

    Article  Google Scholar 

  29. Mahindrakar, A., Rao, S., Banavar, R.: Point-to-point control of a 2R planar horizontal underactuated manipulator. Mech. Mach. Theory 41(7), 838–844 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Murray, R.M., Hauser, J.: A case study in approximate linearization: The Acrobot example. Technical report UCB/ERL M91/46, EECS Department, University of California, Berkeley (1991)

    Google Scholar 

  31. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  32. Nakamura, Y., Suzuki, T., Koinuma, M.: Nonlinear behavior and control of a nonholonomic free-joint manipulator. IEEE Trans. Robot. Autom. 13(6), 853–862 (1997)

    Article  Google Scholar 

  33. Nakamura, Y., Chung, W., Sordalen, O.J.: Design and control of the nonholonomic manipulator. IEEE Trans. Robot. Autom. 17(1), 48–59 (2001)

    Article  Google Scholar 

  34. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. Am. Math. Soc., Providence (1972)

    MATH  Google Scholar 

  35. Oriolo, G., Nakamura, Y.: Control of mechanical systems with second-order nonholonomic constraints: Underactuated manipulators. In: Proceedings of the 30th IEEE Conference on Decision and Control, pp. 2398–2403 (1991)

    Google Scholar 

  36. Pettersen, K.Y., Egeland, O.: Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle. IEEE Trans. Autom. Control 44(1), 112–115 (2002)

    Article  MathSciNet  Google Scholar 

  37. Reyhanoglu, M., van der Schaft, A., McClamroch, N.H., Kolmanovsky, I.: Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Control 44(9), 1663–1671 (1999)

    Article  MATH  Google Scholar 

  38. Saito, F., Fukuda, T., Arai, F.: Swing and locomotion control for a two-link brachiation robot. IEEE Control Syst. Mag. 14(1), 5–12 (1994)

    Google Scholar 

  39. Shkolnik, A., Tedrake, R.: High-dimensional underactuated motion planning via task space control. In: Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3762–3768 (2008)

    Chapter  Google Scholar 

  40. Sordalen, O.J.: Conversion of the kinematics of a car with n trailers into a chained form. In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, pp. 382–387 (1993)

    Google Scholar 

  41. Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109(4), 310–318 (1987)

    Article  MATH  Google Scholar 

  42. Spong, M.W.: The swing up control problem for the Acrobot. IEEE Control Syst. Mag. 15(1), 49–55 (1995)

    Article  Google Scholar 

  43. Spong, M.W.: Energy based control of a class of underactuated mechanical systems. In: Proceedings of the 13th IFAC World Congress, pp. 431–435 (1996)

    Google Scholar 

  44. Spong, M.W., Block, D.J.: The Pendubot: A mechatronic system for control research and education. In: Proceedings of the 34th IEEE Conference on Decision and Control, pp. 555–556 (1995)

    Google Scholar 

  45. Su, C.Y., Stepanenko, Y.: Adaptive variable structure set-point control of underactuated robots. IEEE Trans. Autom. Control 44(11), 2090–2093 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Subudhi, B., Morris, A.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41(4), 257–270 (2002)

    Article  MATH  Google Scholar 

  47. Tanaka, S., Xin, X., Yamasaki, T.: New results of energy-based swing-up control for a rotational pendulum. SICE J. Control Meas. Syst. Integr. 4(6), 394–400 (2011)

    Article  Google Scholar 

  48. Tanaka, S., Xin, X., Yamasaki, T.: New results of energy-based swing-up control for rotational pendulum. In: Proceedings of the 18th IFAC World Congress, pp. 10673–10678 (2011)

    Google Scholar 

  49. Tanaka, S., Xin, X., Yamasaki, T.: Experimental verification of energy-based swing-up control for a rotational pendulum. In: Proceedings of SICE Annual Conference 2012, pp. 534–539 (2012)

    Google Scholar 

  50. Wen, J.T.: Control of nonholonomic systems. In: The Control Handbook, pp. 1359–1368. CRC Press, Boca Raton (1996)

    Google Scholar 

  51. Xin, X.: Analysis of the energy based swing-up control for a double pendulum on a cart. In: Proceedings of the 17th IFAC World Congress, pp. 4828–4833 (2008)

    Google Scholar 

  52. Xin, X.: Analysis of the energy-based swing-up control for the double pendulum on a cart. Int. J. Robust Nonlinear Control 21(4), 387–403 (2011)

    Article  MATH  Google Scholar 

  53. Xin, X.: Swing-up control for a two-link underactuated robot with a flexible elbow joint: New results beyond the passive elbow joint. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, pp. 2481–2486 (2011)

    Chapter  Google Scholar 

  54. Xin, X.: On simultaneous control of the energy and actuated variables of underactuated mechanical systems—Example of the Acrobot with counterweight. Adv. Robot. 27(12), 959–969 (2013)

    Article  Google Scholar 

  55. Xin, X., Guo, L.: Can the energy and actuated variables of underactuated mechanical systems be controlled?—Example of the Acrobot with counterweight. In: Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with the 28th Chinese Control Conference, pp. 1962–1967 (2009)

    Google Scholar 

  56. Xin, X., Kaneda, M.: The posture control of a 2-link free flying Acrobot with initial angular momentum. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 2068–2073 (2002)

    Google Scholar 

  57. Xin, X., Kaneda, M.: The swing up control for the Acrobot based on energy control approach. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 3261–3266 (2002)

    Google Scholar 

  58. Xin, X., Kaneda, M.: Analysis of the energy based control for swinging up two pendulums. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 4688–4693 (2003)

    Google Scholar 

  59. Xin, X., Kaneda, M.: New analytical results of the energy based swinging up control of the Acrobot. In: Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 704–709 (2004)

    Google Scholar 

  60. Xin, X., Kaneda, M.: Analysis of the energy-based control for swinging up two pendulums. IEEE Trans. Autom. Control 50(5), 679–684 (2005)

    Article  MathSciNet  Google Scholar 

  61. Xin, X., Kaneda, M.: Analysis of the energy based swing-up control of the Acrobot. Int. J. Robust Nonlinear Control 17(16), 1503–1524 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  62. Xin, X., Kaneda, M.: Design and analysis of swing-up control for a 3-link gymnastic robot with passive first joint. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 1923–1928 (2007)

    Google Scholar 

  63. Xin, X., Kaneda, M.: Swing-up control for a 3-DOF gymnastic robot with passive first joint: Design and analysis. IEEE Trans. Robot. 23(6), 1277–1285 (2007)

    Article  Google Scholar 

  64. Xin, X., Liu, Y.: A set-point control for a two-link underactuated robot with a flexible elbow joint. J. Dyn. Syst. Meas. Control 135(5), 051016 (2013)

    Article  Google Scholar 

  65. Xin, X., Liu, Y.: Trajectory tracking control of variable length pendulum by partial energy shaping. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1544–1556 (2014)

    Article  MathSciNet  Google Scholar 

  66. Xin, X., Yamasaki, T.: Energy-based swing-up control for a remotely driven Acrobot: Theoretical and experimental results. IEEE Trans. Control Syst. Technol. 20(4), 1048–1056 (2012)

    Article  Google Scholar 

  67. Xin, X., Kaneda, M., Oki, T.: The swing up control for the Pendubot based on energy control approach. In: Proceedings of the 15th IFAC World Congress (2002)

    Google Scholar 

  68. Xin, X., Mita, T., Kaneda, M.: The posture control of a two-link free flying Acrobot with initial angular momentum. IEEE Trans. Autom. Control 49(7), 1201–1206 (2004)

    Article  MathSciNet  Google Scholar 

  69. Xin, X., Kaneda, M., Yamasaki, T., Omasa, K.: Theoretical and experimental results of energy based swinging up control for a remotely driven Acrobot. In: Proceedings of the 16th IFAC World Congress (2005)

    Google Scholar 

  70. Xin, X., Kaneda, M., Yamasaki, T., She, J.H.: Swing-up control based on virtually composite links for an n-link underactuated robot with passive first joint. In: Proceedings of the 17th IFAC World Congress, pp. 7672–7677 (2008)

    Google Scholar 

  71. Xin, X., She, J., Yamasaki, T.: Swing-up control for n-link planar robot with single passive joint using the notion of virtual composite links. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 4339–4344 (2008)

    Google Scholar 

  72. Xin, X., She, J.H., Yamasaki, T., Liu, Y.N.: Swing-up control based on virtually composite links for an n-link underactuated robot with passive first joint. Automatica 45(9), 1986–1994 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  73. Xin, X., Tanaka, S., She, J., Yamasaki, T.: Revisiting energy-based swing-up control for the Pendubot. In: Proceedings of the 2010 IEEE International Conference on Control Applications, pp. 1576–1581 (2010)

    Chapter  Google Scholar 

  74. Xin, X., Shinji, T., Yamasaki, T., Sun, C.: Trajectory tracking control of pendulum with variable length by partial energy shaping. In: Proceedings of the 18th IFAC World Congress, pp. 10679–10684 (2011)

    Google Scholar 

  75. Xin, X., She, J., Liu, Y.: A unified solution to swing-up control for n-link planar robot with single passive joint based on virtual composite links and passivity. Nonlinear Dyn. 67(2), 909–923 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  76. Xin, X., Tanaka, S., She, J., Yamasaki, T.: New analytical results of energy-based swing-up control for the Pendubot. Int. J. Non-Linear Mech. 52, 110–118 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Xin, X., Liu, Y. (2014). Introduction. In: Control Design and Analysis for Underactuated Robotic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6251-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6251-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6250-6

  • Online ISBN: 978-1-4471-6251-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics