Skip to main content

Advanced Model Initialization Techniques

  • Chapter
  • First Online:
Automatic Speech Recognition

Part of the book series: Signals and Communication Technology ((SCT))

  • 13k Accesses

Abstract

In this chapter, we introduce several advanced deep neural network (DNN) model initialization or pretraining techniques. These techniques have played important roles in the early days of deep learning research and continue to be useful under many conditions. We focus our presentation of pretraining DNNs on the following topics: the restricted Boltzmann machine (RBM), which by itself is an interesting generative model, the deep belief network (DBN), the denoising autoencoder, and the discriminative pretraining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Proceedings of the Neural Information Processing Systems (NIPS), pp. 153–160 (2006)

    Google Scholar 

  2. Bottou, L.: Online learning and stochastic approximations. On-line Learn. Neural Netw. 17, 9 (1998)

    Google Scholar 

  3. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 215–223 (2011)

    Google Scholar 

  4. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio, Speech Lang. Process. 20(1), 30–42 (2012)

    Article  Google Scholar 

  5. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. (JMLR) 11, 625–660 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of training deep architectures and the effect of unsupervised pre-training. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 153–160 (2009)

    Google Scholar 

  7. Hinton, G.: A practical guide to training restricted Boltzmann machines. Technical Report UTML TR 2010-003, University of Toronto (2010)

    Google Scholar 

  8. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The wake-sleep algorithm for unsupervised neural networks. SCIENCE-NEW YORK THEN WASHINGTON- pp. 1158–1158 (1995)

    Google Scholar 

  11. Hinton, G.E., Salakhutdinov, R.: Replicated softmax: an undirected topic model. In: Proceedings of the Neural Information Processing Systems (NIPS), pp. 1607–1614 (2009)

    Google Scholar 

  12. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  13. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 536–543 (2008)

    Google Scholar 

  14. Ling, Z.H., Deng, L., Yu, D.: Modeling spectral envelopes using restricted Boltzmann machines and deep belief networks for statistical parametric speech synthesis. IEEE Trans. Audio, Speech Lang. Process. 21(10), 2129–2139 (2013)

    Article  Google Scholar 

  15. Sainath, T., Kingsbury, B., Ramabhadran, B.: Improving training time of deep belief networks through hybrid pre-training and larger batch sizes. In: Proceedings of the Neural Information Processing Systems (NIPS) Workshop on Log-linear Models (2012)

    Google Scholar 

  16. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative filtering. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 791–798 (2007)

    Google Scholar 

  17. Saul, L.K., Jaakkola, T., Jordan, M.I.: Mean field theory for sigmoid belief networks. J. Artif. Intell. Res. (JAIR) 4, 61–76 (1996)

    MATH  Google Scholar 

  18. Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent deep neural networks for conversational speech transcription. In: Proceedings of the IEEE Workshop on Automfatic Speech Recognition and Understanding (ASRU), pp. 24–29 (2011)

    Google Scholar 

  19. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: Proceedings of the Annual Conference of International Speech Communication Association (INTERSPEECH), pp. 437–440 (2011)

    Google Scholar 

  20. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. Department of Computer Science, University of Colorado, Boulder (1986)

    Google Scholar 

  21. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 1096–1103 (2008)

    Google Scholar 

  22. Yu, D., Deng, L., Dahl, G.: Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition. In: Proceedings of the Neural Information Processing Systems (NIPS) Workshop on Deep Learning and Unsupervised Feature Learning (2010)

    Google Scholar 

  23. Zhang, S., Bao, Y., Zhou, P., Jiang, H., Li-Rong, D.: Improving deep neural networks for LVCSR using dropout and shrinking structure. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6899–6903 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Yu, D., Deng, L. (2015). Advanced Model Initialization Techniques. In: Automatic Speech Recognition. Signals and Communication Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5779-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5779-3_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5778-6

  • Online ISBN: 978-1-4471-5779-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics