Skip to main content

Robust Stability Analysis

  • Chapter
  • First Online:
Discrete Control Systems
  • 2362 Accesses

Abstract

The stability analysis of nonlinear discretized feedback systems is given in this chapter. The concept is based on bounded input and bounded output (BIBO) stability, that is, the small gain theorem. Although the stability analysis of nonlinear feedback systems usually uses Lyapunov methods, the Lyapunov function cannot always be determined for actual systems. There are uncertain parameters (and system orders) and also many exogenous inputs. Therefore, an analysis and design in the frequency domain based on Parseval’s identity is effective. In this book, as a design method, modified Nyquist-Hall and Nichols diagrams are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Appendix C in Chap. 2.

  2. 2.

    See Appendix B in this chapter.

  3. 3.

    See Appendix B in Chap. 1.

  4. 4.

    See Appendix A in Chap. 2.

  5. 5.

    See Appendix A in Chap 2.

  6. 6.

    In the following example, the stepwise representation is applied to the (point-to-point) nonlinear characteristic. As a result, the lower bound of the nonlinear sector is less than that of the point-transition characteristics.

  7. 7.

    Actually, 0<β<1.863 when the nominal system is stable.

  8. 8.

    See Appendix D.

  9. 9.

    See Appendix E.

  10. 10.

    In this book, we assume that the independent variable t represents time (expressed in the SI unit of seconds), and the transformed variables f and ω represent ordinary frequency (in Hertz) and angular frequency (in radians per second), respectively.

References

  1. Desoer CA, Vidyasagar M (1975) Feedback systems, input-output properties. Academic Press, New York, republished by SIAM, 2009

    MATH  Google Scholar 

  2. Hall AC (1943) The analysis and synthesis of linear servomechanisms. MIT, Cambridge

    Google Scholar 

  3. Harris CJ, Valenca JME (1983) The stability of input-output dynamical systems. Academic Press, New York

    MATH  Google Scholar 

  4. James HM, Nichols NB, Philips RS (1947) Theory of servomechanisms. MIT, Cambridge

    Google Scholar 

  5. Katznelson Y (2004) Introduction to harmonic analysis, 3rd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  6. Mashreghi J (2009) Representation theorem in Hardy spaces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Newton GC Jr, Gould LA, Kaiser JF (1957) Analytical design of linear feedback controls. Wiley, New York

    Google Scholar 

  8. Okuyama Y (1967) On the L 2-stability of linear systems with time-varying parameters. Trans SICE 3:252–259 (in Japanese)

    Article  Google Scholar 

  9. Okuyama Y, Takemori F (1999) Robust stability evaluation for sampled-data control systems with a sector nonlinearity in a gain-phase plane. Int J Robust Nonlinear Control 9:15–32

    Article  MATH  MathSciNet  Google Scholar 

  10. Okuyama Y, Takemori F (2002) Robust stability analysis for sampled-data control systems in a frequency domain. Eur J Control 8:99–108

    Article  MATH  Google Scholar 

  11. Okuyama Y, Takemori F (2002) Amplitude dependent analysis and stabilization for nonlinear sampled-data control systems. In: Proc of the 15th IFAC world congress, T-Tu-M08, Barcelona, Spain

    Google Scholar 

  12. Rudin W (1987) Real and complex analysis, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  13. Sandberg IW (1964) A frequency domain condition for stability of feedback systems containing a single time-varying nonlinear element. Bell Syst Tech J 43:1601–1608

    Article  MATH  MathSciNet  Google Scholar 

  14. Vidyasagar M (1993) Nonlinear systems analysis, 2nd edn. Prentice-Hall, New York, republished by SIAM, 2002

    MATH  Google Scholar 

  15. Zames G (1966) On the input-output stability of nonlinear time-varying feedback systems, Pt I and II. IEEE Trans Autom Control AC-11:228–238, 465–477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix A: Fourier-Plancherel Transform

For continuous-time signals, consider the following integral pairs:

$$\begin{aligned} &\hat{x}(j\omega)=\int_{-\infty}^\infty x(t)~\mathrm{e}^{-j\omega t}\mathrm{d}t \end{aligned}$$
(3.97)
$$\begin{aligned} &x(t)=\frac{1}{2\pi}\int_{-\infty}^\infty\hat{x}(j\omega)~\mathrm{e}^{j\omega t} \mathrm{d}\omega, \end{aligned}$$
(3.98)

where ω=2πf.Footnote 10 Usually, (3.97) is called the Fourier transform, and (3.98) is called the inverse Fourier transform [5, 6]. When evaluating at s= (s: Laplace transform variable, in general, s=σ+), the preceding transforms become bilateral as follows:

$$\begin{aligned} &\hat{x}(s)=\int_{-\infty}^\infty x(t)~\mathrm{e}^{-s t}\mathrm{d}t \end{aligned}$$
(3.99)
$$\begin{aligned} &x(t)=\frac{1}{2\pi j}\int_{-j\infty}^{j\infty}\hat{x}(s)~\mathrm{e}^{s t} \mathrm{d}s. \end{aligned}$$
(3.100)

With respect to t∈[0,∞), the following transform is defined:

$$ \hat{x}(s)=\int_0^\infty x(t)~\mathrm{e}^{-s t}\mathrm{d}t. $$
(3.101)

Definition (3.101) is the (unilateral) Laplace transform, which is well known in the field of control engineering.

The value of integrations (3.97) and (3.99) exists when the following inequality holds:

$$|\hat{x}(s)|=\left|\int_{-\infty}^\infty x(t)~\mathrm{e}^{-st}\mathrm{d}t\right| \le \int_{-\infty}^\infty |x(t)|\mathrm{d}t<\infty. $$

In functional analysis, x(t) is said to belong to the L 1 space, and is written as x(t)∈L 1. In general, if

$$\int_{-\infty}^\infty |x(t)|^p\mathrm{d}t<\infty, $$

x(t) is said to belong to L p and is written as x(t)∈L p or

$$x \in L_p(\mathbb{R}), ~~~~~~\mathbb{R}:=(-\infty, \infty). $$

In the L p space, the norm is defined as follows:

$$ \|x(t)\|_p:=\left( \int_{-\infty}^\infty |x(t)|^p\mathrm{d}t\right)^{1/p}. $$
(3.102)

Obviously, in regard to the inverse Fourier (Laplace) transform, x(s) must belong to the L 1 space.

Plancherel’s theorem states that if x(t)∈L 1L 2, the above transformed function \(\hat{x}(s)\) can also be determined similarly.

Plancherel Theorem

When \(x\in L_{2}(\mathbb{R})\), the following \(\hat{x}(j\omega)\) exists:

$$\begin{aligned} &\hat{x}_A(j\omega)=\int_{-A}^Ax(t)~\mathrm{e}^{-j\omega t}\mathrm{d}t\\ &\int_{-\infty}^{\infty}|\hat{x}(j\omega)-\hat{x}_A(j\omega)|^2 \mathrm{d}\omega\to 0,~~~~~~~~\mathit{for}~~A\to \infty. \end{aligned}$$

With respect to \(\hat{x}(j\omega)\), the following relation holds:

$$\begin{aligned} &x_B(t)=\frac{1}{2\pi}\int_{-B}^B\hat{x}(j\omega)~ \mathrm{e}^{j\omega t}\mathrm{d}\omega\\ &\int_{-\infty}^\infty |x(t)-x_B(t)|^2\mathrm{d}t \to 0, ~~~~~~~\mathit{for}~~B\to\infty. \end{aligned}$$

Appendix B: Parseval Identity

Consider the following integral with respect to x 1(t),x 2(t)∈L 1L 2:

$$ I=\int_{-\infty}^\infty \mathrm{d}t x_1(t)x_2(t). $$
(3.103)

By using the inverse Fourier (Laplace) transform, x 2(t) is given by

$$x_2(t)=\frac{1}{2\pi j}\int_{-j\infty}^{j\infty} \mathrm{d}s \hat{x}_2(s)e^{st}. $$

Substitution of this value of x 2(t) into (3.103) yields

$$I=\int_{-\infty}^\infty\mathrm{d}t~x_1(t)\frac{1}{2\pi j}\int_{-j\infty}^{j \infty} \mathrm{d}s~\mathrm{e}^{st}\hat{x}_2(s). $$

Interchange the order of the integrations,

$$ I=\frac{1}{2\pi j}\int_{-j\infty}^{j\infty}\mathrm{d}s~ \hat{x}_2(s)\int_{-\infty}^\infty\mathrm{d}t~\mathrm{e}^{st}~x_1(t). $$
(3.104)

By applying the Fourier (two-sided Laplace) transform,

$$\hat{x}_1(s)=\int_{-\infty}^\infty \mathrm{d}t~\mathrm{e}^{-st}~x_1(t). $$

This expression can be written as

$$\hat{x}_1(-s)=\int_{-\infty}^\infty \mathrm{d}t~\mathrm{e}^{st}~x_1(t) $$

Therefore, (3.104) is expressed as

$$ I=\frac{1}{2\pi j}\int_{-j\infty}^{j\infty}\mathrm{d}s~\hat{x}_1(-s)\hat{x}_2(s). $$
(3.105)

For an easier understanding, (3.105) is rewritten for s=,

$$ I=\frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{x}_1(-j\omega)\hat{x}_2(j\omega)~\mathrm{d}\omega. $$
(3.106)

When x 1(t)=x 2(t)=x(t), (3.106) is given by

$$ I=\frac{1}{2\pi}\int_{-\infty}^\infty \hat{x}(-j\omega)\hat{x}(j\omega)~\mathrm{d}\omega =\frac{1}{2\pi}\int_{-\infty}^\infty |\hat{x}(j\omega|^2~\mathrm{d}\omega. $$
(3.107)

Then, the following equality is obtained from (3.103):

$$ \int_{-\infty}^\infty |x(t)|^2~\mathrm{d}t =\frac{1}{2\pi}\int_{-\infty}^\infty |\hat{x}(j\omega|^2~\mathrm{d}\omega. $$
(3.108)

Here, define the following L 2 norms:

$$\begin{aligned} &\|x(t)\|_2:= \left(\int_{-\infty}^\infty|x(t)|^2\mathrm{d}t \right)^{1/2}\\ &\|\hat{x}(j\omega)\|_2:= \left(\frac{1}{2\pi}\int_{-\infty}^\infty |\hat{x}(j\omega)|^2\mathrm{d}\omega \right)^{1/2}. \end{aligned}$$

Thus, we obtain

$$\|x(t)\|_2=\|\hat{x}(j\omega)\|_2. $$

This formula is called Parseval’s identity.

On the other hand, as for discrete-time signals, consider the following summation of discrete signals:

$$ J=\sum_{k=1}^\infty x_1(k)x_2(k). $$
(3.109)

By using the inverse z-transform,

$$ x_2(k)=\frac{1}{2\pi j}\int_{|z|=1}\hat{x}_2(z)z^{k-1}\mathrm{d}z, $$
(3.110)

where z=eh(σ+). Substitution of this x 2(k) into (3.109) yields

$$J=\sum_{k=0}^\infty x_1(k)~ \frac{1}{2\pi j}\int_{|z|=1}\hat{x}_2(z)z^{k-1}\mathrm{d}z. $$

Here, for σ=0,

$$\mathrm{d}z=jh\mathrm{e}^{j\omega h}~\mathrm{d}\omega. $$

Based on the z-transform,

$$\hat{x}_1(z)=\sum_{k=0}^\infty x_1(k)~z^{-k}, $$

the following can be defined:

$$\hat{x}_1(\overline{z})=\sum_{k=1}^\infty x_1(k)~z^k. $$

Thus

$$ J=\frac{1}{2\pi j}\int_{|z|=1}\hat{x}_1(\overline{z})\hat{x}_2(z)z^{-1}\mathrm{d}z =\frac{h}{2\pi}\int_{-\pi}^\pi \hat{x}_1(\mathrm{e}^{-j\omega h})~ \hat{x}_2(\mathrm{e}^{j\omega h})~\mathrm{d}\omega. $$
(3.111)

When x 1(k)=x 2(k)=x(k), (3.111) is given by

$$J=\frac{h}{2\pi}\int_{-\pi}^\pi \hat{x}(\mathrm{e}^{-j\omega h})~\hat{x}(\mathrm{e}^{j\omega h})~\mathrm{d}\omega. =\frac{h}{2\pi}\int_{-\pi}^\pi |\hat{x}(\mathrm{e}^{-j\omega h})|^2~\mathrm{d}\omega. $$

Then, the following equality is obtained from (3.109):

$$ \sum_{k=0}^\infty |x(k)|^2 =\frac{h}{2\pi} \int_{-\pi}^\pi |\hat{x}(\mathrm{e}^{j\omega h})|^2 \mathrm{d}\omega. $$
(3.112)

If the norm expressions in the 2 space,

$$\begin{aligned} &\|x(k)\|_2:=\left(\sum_{k=0}^\infty|x(k)|^2\right)^{1/2}\\ &\|\hat{x}(\mathrm{e}^{j\omega h})\|_2:= \left(\frac{h}{2\pi}\int_{-\pi}^\pi |\hat{x}(\mathrm{e}^{j\omega h})|^2\mathrm{d}\omega\right)^{1/2} \end{aligned}$$

are used, the relation

$$\|x(k)\|_2=\|\hat{x}(\mathrm{e}^{j\omega h})\|_2 $$

can be obtained. The result is called Parseval’s identity [7, 12].

Appendix C: Bilinear Transformation and Mapping

The relationship between z and δ with respect to

$$\delta=\frac{2}{h}\cdot\frac{z-1}{z+1},~~~{\mathrm{that~~is},~~~} z=\frac{1+\frac{h}{2}\delta}{1-\frac{h}{2}\delta}, $$

is as shown in Figs. 3.24(a) and (b). Furthermore, from the following equality:

$$\delta(\mathrm{e}^{j\omega h})=j\Omega(\omega) =j\frac{2}{h}\tan\left(\frac{\omega h}{2}\right), $$

the relationship between ω and Ω is illustrated in Fig. 3.25.

Fig. 3.24
figure 24

Relation between z-plane and δ-plane, and contours

Fig. 3.25
figure 25

Distorted frequency characteristic

Appendix D: The Hall Diagram

Consider a (unity feedback) closed-loop characteristic,

$$ W(z)=\frac{G(z)}{1+G(z)}, $$
(3.113)

as shown in Fig. 3.26. When we define the following frequency characteristic for ω<ω c as shown in (3.32):

$$G(\mathrm{e}^{j\omega h})=U(\omega)+jV(\omega), $$

and

$$W(\mathrm{e}^{j\omega h})=M\mathrm{e}^{j\varphi}, $$

obviously,

$$M=|W(\mathrm{e}^{j\omega h})|~~~\mathrm{and}~~~ \varphi=\angle W(\mathrm{e}^{j\omega h}). $$

Therefore,

$$ M=\frac{|U+jV|}{|1+U+jV|} $$
(3.114)

and

$$ \varphi=\tan^{-1}\frac{V}{U}- \tan^{-1}\frac{V}{1+U}. $$
(3.115)

By rearranging (3.114), the following equation is obtained:

$$ \left(U+\frac{M^2}{M^2-1}\right)^2+V^2=\left(\frac{M}{M^2-1}\right)^2, ~~~\mathrm{for}~~~M\neq 1. $$
(3.116)

Here, when M=1, the equation is given as

$$ U=-\frac{1}{~2~}. $$
(3.117)

Equation (3.117) is a (purple) line in Fig. 3.27, and (3.116) (in blue) circles the right side to (3.117) for M<1 and the left side to the line for M>1.

Fig. 3.26
figure 26

Discrete-time unity feedback system

Fig. 3.27
figure 27

Hall diagram

On the other hand, with respect to (3.115) the following circles equation is obtained by setting N=tanφ:

$$ \left(U+\frac{1}{2}\right)^2+\left(V-\frac{1}{2N}\right)^2 =\frac{1}{4}\left(\frac{N^2+1}{N^2}\right). $$
(3.118)

Equation (3.118) also becomes circles, shown in light blue in Fig. 3.27. Such type of diagram is often called the Hall diagram [2].

The derivations of (3.116) and (3.118) from (3.114) and (3.115) are left for the reader.

Appendix E: The Nichols Diagram

Next, consider the open-loop characteristic G(ejωh) in polar coordinates as follows:

$$ G(\mathrm{e}^{j\omega h})=\rho\cdot\mathrm{e}^{j\theta}. $$
(3.119)

Obviously, the closed-loop characteristic is given by

$$ W(\mathrm{e}^{j\omega h}) =\frac{\rho\cdot\mathrm{e}^{j\theta}}{1+\rho\cdot\mathrm{e}^{j\theta}}. $$
(3.120)

Therefore,

$$ M=|W(\mathrm{e}^{j\omega h})| =\frac{\rho}{\sqrt{(1+\rho\cos\theta)^2+\rho^2\sin^2\theta}}. $$
(3.121)

By rearranging (3.121), the following quadratic equation is obtained for M≠1:

$$ \rho^2+2\frac{M^2\cos\theta}{M^2-1}\cdot\rho+\frac{M^2}{M^2-1}=0. $$
(3.122)

Then,

$$ \rho=\frac{1}{M^2-1}\left(-M^2\cos\theta\pm M\sqrt{\cos^2\theta-(M^2-1)}\right). $$
(3.123)

Curves (3.123) are drawn in blue in Fig. 3.28. When M=1, note that ρ is simply written as follows:

$$ \rho=-\frac{1}{2\cos\theta}. $$
(3.124)

This curve is drawn in purple in the figure.

Fig. 3.28
figure 28

Nichols diagram

On the other hand, for phase φ,

$$ \varphi=\angle W(\mathrm{e}^{j\omega h}) =\theta-\tan^{-1}\left(\frac{\rho\sin\theta}{1+\rho\cos\theta}\right). $$
(3.125)

From (3.125),

$$N=\tan\varphi=\frac{\sin\theta}{\cos\theta+\rho}. $$

Then,

$$ \rho=\frac{\sin\theta}{\tan\varphi}-\cos\theta. $$
(3.126)

Curves (3.125) are drawn in sky blue in the figure. Here, the derivations of (3.123), (3.124), and (3.126) from (3.121) and (3.125) are left for the reader.

The diagram shown in Fig. 3.28 is the well-known Nichols diagram [4].

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Okuyama, Y. (2014). Robust Stability Analysis. In: Discrete Control Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5667-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5667-3_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5666-6

  • Online ISBN: 978-1-4471-5667-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics