Skip to main content

Abstract

In this chapter, we deal with CT-LTV systems subject to uncertainties; it is assumed that the uncertain part can be modeled according to the classical linear fractional transformation (LFT) form, which covers many cases of practical interest. The concept of quadratic FTS (QFTS) is introduced; QFTS implies the existence of a quadratic Lyapunov function that allows us to prove the FTS of the given system for all admissible uncertainties. The main result of the chapter is a necessary and sufficient condition for QFTS in terms of either DLMIs or DLEs; then synthesis conditions are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of brevity, in the DLMI, we will omit the time argument and the lower triangular entries of the symmetric matrices and replace them with dots.

References

  1. Amato, F.: Robust Control of Linear Systems Subject to Uncertain and Time-Varying Parameters. Springer, Berlin (2006)

    Google Scholar 

  2. Amato, F., Pironti, A., Scala, S.: Necessary and sufficient conditions for quadratic stability and stabilizability of uncertain linear time-varying systems. IEEE Trans. Autom. Control 41(1), 125–128 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amato, F., Ariola, M., Cosentino, C.: Robust finite-time stabilisation of uncertain linear systems. Int. J. Control 84(12), 2117–2127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barmish, B.R.: Stabilization of uncertain systems via linear control. IEEE Trans. Autom. Control 28(8), 848–850 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  6. Corless, M.: Robust stability analysis and controller design with quadratic Lyapunov functions. In: Variable Structure and Lyapunov Control. Lectures Notes in Control and Information Sciences, vol. 193, pp. 181–203. Springer, Berlin (1994)

    Chapter  Google Scholar 

  7. Doyle, J.C., Packard, A., Zhou, K.: Review of LFTs, LMIs and μ. In: Proc. IEEE Conference on Decision and Control, Brighton, UK, pp. 1227–1232 (1991)

    Google Scholar 

  8. Geromel, J.C., Peres, P.L.D., Bernussou, J.: On a convex parameter space method for linear control design of uncertain systems. SIAM J. Control Optim. 29, 381–402 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., De Tommasi, G. (2014). Robustness Issues. In: Finite-Time Stability and Control. Lecture Notes in Control and Information Sciences, vol 453. Springer, London. https://doi.org/10.1007/978-1-4471-5664-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5664-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5663-5

  • Online ISBN: 978-1-4471-5664-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics