The Attention Systems of the Human Brain

  • Paolo Bartolomeo


This introductory chapter presents a brief overview of attention processes, with their putative neural bases in the human brain. The interested reader will find more material in the list of further readings at the end of the chapter. Attention is conceived as a heterogeneous set of processes, which allow us to select and act on external or internal sources of information and produce behavior which can take into account both our goals and the occurrence of unexpected events. The integrated functioning of frontoparietal networks, with specific interhemispheric differences often favoring the right hemisphere, is crucial for attention processes.


Selection Alertness Vigilance Control Endogenous attention Exogenous attention Inhibition of return Frontoparietal networks 


  1. Allport DA. Visual attention. In: Posner MI, editor. Foundations of cognitive science. Cambridge, MA: MIT Press; 1989. p. 631–87.Google Scholar
  2. Anton-Erxleben K, Carrasco M. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat Rev Neurosci. 2013;14:188–200.PubMedCrossRefGoogle Scholar
  3. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004;8:170–7.PubMedCrossRefGoogle Scholar
  4. Asplund CL, Todd JJ, Snyder AP, Marois R. A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat Neurosci. 2010;13:507–12.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.Google Scholar
  6. Barch DM, Braver TS, Sabb FW, Noll DC. Anterior cingulate and the monitoring of response conflict: evidence from an fMRI study of overt verb generation. J Cogn Neurosci. 2000;12:298–309.PubMedCrossRefGoogle Scholar
  7. Bartolomeo P, Lupiáñez J, editors. Inhibitory after-effects in spatial processing: experimental and theoretical issues on inhibition of return. Hove: Psychology Press; 2006.Google Scholar
  8. Bartolomeo P, Zieren N, Vohn R, Dubois B, Sturm W. Neural correlates of primary and reflective consciousness of spatial orienting. Neuropsychologia. 2008;46:348–61.PubMedCrossRefGoogle Scholar
  9. Bartolomeo P, Thiebaut de Schotten M, Chica AB. Brain networks of visuospatial attention and their disruption in visual neglect. Front Hum Neurosci. 2012;6:110.PubMedCentralPubMedGoogle Scholar
  10. Berlucchi G. Inhibition of return: a phenomenon in search of a mechanism and a better name. Cogn Neuropsychol. 2006;23:1065–74.PubMedCrossRefGoogle Scholar
  11. Bowers D, Heilman KM. Pseudoneglect: effects of hemispace on a tactile line bisection task. Neuropsychologia. 1980;18:491–8.PubMedCrossRefGoogle Scholar
  12. Brown JW. Beyond conflict monitoring: cognitive control and the neural basis of thinking before you act. Curr Dir Psychol Sci. 2013;22:179–85.CrossRefGoogle Scholar
  13. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315:1860–2.PubMedCrossRefGoogle Scholar
  14. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4:215–22.PubMedCrossRefGoogle Scholar
  15. Carrasco M, Ling S, Read S. Attention alters appearance. Nat Neurosci. 2004;7:308–13.PubMedCrossRefGoogle Scholar
  16. Carter CS, Mintun M, Cohen JD. Interference and facilitation effects during selective attention: an H215O PET study of Stroop task performance. Neuroimage. 1995;2:264–72.PubMedCrossRefGoogle Scholar
  17. Carter CS, Botvinick MM, Cohen JD. The contribution of the anterior cingulate cortex to executive processes in cognition. Rev Neurosci. 1999;10:49–57.PubMedGoogle Scholar
  18. Catani M, Jones DK, Donato R, Ffytche DH. Occipito-temporal connections in the human brain. Brain. 2003;126:2093–107.PubMedCrossRefGoogle Scholar
  19. Chica AB, Bartolomeo P. Attentional routes to conscious perception. Front Psychol. 2012;3:1–12.Google Scholar
  20. Chica AB, Bartolomeo P, Lupiáñez J. Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res. 2013a;237:107–23.PubMedCrossRefGoogle Scholar
  21. Chica AB, Paz-Alonso PM, Valero-Cabré A, Bartolomeo P. Neural bases of the interactions between spatial attention and conscious perception. Cereb Cortex. 2013b;23:1269–79.PubMedCrossRefGoogle Scholar
  22. Chun MM, Golomb JD, Turk-Browne NB. A taxonomy of external and internal attention. Annu Rev Psychol. 2011;62:73–101.PubMedCrossRefGoogle Scholar
  23. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.Google Scholar
  24. Coull JT, Buchel C, Friston KJ, Frith CD. Noradrenergically mediated plasticity in a human attentional neuronal network. Neuroimage. 1999;10:705–15.PubMedCrossRefGoogle Scholar
  25. Dehaene S, Changeux JP. Experimental and theoretical approaches to conscious processing. Neuron. 2011;70:200–27.PubMedCrossRefGoogle Scholar
  26. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.PubMedCrossRefGoogle Scholar
  27. Di Ferdinando A, Parisi D, Bartolomeo P. Modeling orienting behavior and its disorders with “ecological” neural networks. J Cogn Neurosci. 2007;19:1033–49.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Egly R, Driver J, Rafal RD. Shifting visual attention between objects and locations: evidence from normal and parietal lesion patients. J Exp Psychol Gen. 1994;123:161–77.PubMedCrossRefGoogle Scholar
  29. Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a non-search task. Percept Psychophys. 1974;16:143–9.CrossRefGoogle Scholar
  30. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14:340–7.PubMedCrossRefGoogle Scholar
  31. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage. 2005;26:471–9.PubMedCrossRefGoogle Scholar
  32. Fernandez-Duque D, Posner MI. Relating the mechanisms of orienting and alerting. Neuropsychologia. 1997;35:477–86.PubMedCrossRefGoogle Scholar
  33. Gaspar P, Berger B, Febvret A, Vigny A, Henry JP. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol. 1989;279:249–71.PubMedCrossRefGoogle Scholar
  34. Gasquoine PG. Localization of function in anterior cingulate cortex: from psychosurgery to functional neuroimaging. Neurosci Biobehav Rev. 2013;37:340–8.PubMedCrossRefGoogle Scholar
  35. Gillebert CR, Mantini D, Peeters R, Dupont P, Vandenberghe R. Cytoarchitectonic mapping of attentional selection and reorienting in parietal cortex. Neuroimage. 2013;67:257–72.PubMedCrossRefGoogle Scholar
  36. Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20–5.PubMedCrossRefGoogle Scholar
  37. Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM. The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage. 2010;50:1313–9.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Indovina I, Macaluso E. Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. Cereb Cortex. 2007;17:1701–11.PubMedCrossRefGoogle Scholar
  39. Jewell G, McCourt ME. Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia. 2000;38:93–110.PubMedCrossRefGoogle Scholar
  40. Klein RM. Inhibition of return. Trends Cogn Sci. 2000;4:138–47.PubMedCrossRefGoogle Scholar
  41. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12:217–30.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci. 2013;17:26–49.PubMedCrossRefGoogle Scholar
  43. Kusnir F, Chica AB, Mitsumasu MA, Bartolomeo P. Phasic auditory alerting improves visual conscious perception. Conscious Cogn. 2011;20:1201–10.PubMedCrossRefGoogle Scholar
  44. LaBerge D, Auclair L, Siéroff E. Preparatory attention: experiment and theory. Conscious Cogn. 2000;9:396–434.PubMedCrossRefGoogle Scholar
  45. Lu C-H, Proctor RW. The influence of irrelevant location information on performance: a review of the Simon and spatial Stroop effects. Psychon Bull Rev. 1995;2:174–207.PubMedCrossRefGoogle Scholar
  46. Mack A, Rock I. Inattentional blindness. Cambridge, MA: The MIT Press; 1998.Google Scholar
  47. Macquistan AD. Object-based allocation of visual attention in response to exogenous, but not endogenous, spatial precues. Psychon Bull Rev. 1997;4:512–5.CrossRefGoogle Scholar
  48. Maylor EA, Hockey R. Inhibitory component of externally controlled covert orienting in visual space. J Exp Psychol Hum Percept Perform. 1985;11:777–87.PubMedCrossRefGoogle Scholar
  49. Mesulam MM, Hersh LB, Mash DC, Geula C. Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study. J Comp Neurol. 1992;318:316–28.PubMedCrossRefGoogle Scholar
  50. Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983;6:414–7.CrossRefGoogle Scholar
  51. Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229:782–4.PubMedCrossRefGoogle Scholar
  52. Moruzzi G, Magoun HW. Brainstem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73.PubMedGoogle Scholar
  53. Mottaghy FM, Willmes K, Horwitz B, Muller HW, Krause BJ, Sturm W. Systems level modeling of a neuronal network subserving intrinsic alertness. Neuroimage. 2006;29:225–33.PubMedCrossRefGoogle Scholar
  54. Parasuraman R. The attentive brain: issues and prospects. In: Parasuraman R, editor. The attentive brain. Cambridge, MA: The MIT Press; 1998. p. 3–15.Google Scholar
  55. Pardo JV, Fox PT, Raichle ME. Localization of a human system for sustained attention by positron emission tomography. Nature. 1991;349:61–4.PubMedCrossRefGoogle Scholar
  56. Pardo JV, Pardo PJ, Janer KW, Raichle ME. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America. 1990;87:256–9.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Paus T, Koski L, Caramanos Z, Westbury C. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. NeuroReport. 1998;9:R37–47.PubMedCrossRefGoogle Scholar
  58. Petrides M, Pandya DN. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol. 1984;228:105–16.PubMedCrossRefGoogle Scholar
  59. Posner MI. Orienting of attention. Q J Exp Psychol. 1980;32:3–25.PubMedCrossRefGoogle Scholar
  60. Posner MI. Attention: the mechanisms of consciousness. Proc Natl Acad Sci U S A. 1994;91:7398–403.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Posner MI, Cohen Y. Components of visual orienting. In: Bouma H, Bouwhuis D, editors. Attention and performance X. London: Lawrence Erlbaum; 1984. p. 531–56.Google Scholar
  62. Posner MI, Rafal RD, Choate LS, Vaughan J. Inhibition of return: neural basis and function. Cogn Neuropsychol. 1985;2:211–28.CrossRefGoogle Scholar
  63. Rafal RD, Henik A. The neurology of inhibition: integrating controlled and automatic processes. In: Dagenbach D, Carr TH, editors. Inhibitory processes in attention, memory and language. San Diego: Academic; 1994. p. 1–51.Google Scholar
  64. Rizzolatti G, Matelli M. Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res. 2003;153:146–57.PubMedCrossRefGoogle Scholar
  65. Robertson IH, Mattingley JB, Rorden C, Driver J. Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature. 1998;395:169–72.PubMedCrossRefGoogle Scholar
  66. Robertson IH, Garavan H. Vigilant attention. In: Gazzaniga MS, editor. The cognitive neurosciences. 3rd ed. Cambridge, MA: MIT Press; 2004. p. 563–78.Google Scholar
  67. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, Kleinschmidt A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci. 2010;30:10243–50.PubMedCrossRefGoogle Scholar
  68. Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Behav Brain Res. 2001;35:146–60.CrossRefGoogle Scholar
  69. Schmahmann JD, Pandya DN. Fiber pathways of the brain. New York: Oxford University Press; 2006.Google Scholar
  70. Silvetti M, Seurinck R, Verguts T. Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis. Front Hum Neurosci. 2011;5:75.PubMedCentralPubMedGoogle Scholar
  71. Simons DJ, Chabris CF. Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception. 1999;28:1059–74.PubMedCrossRefGoogle Scholar
  72. Singh-Curry V, Husain M. The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia. 2009;47:1434–48.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643–62.CrossRefGoogle Scholar
  74. Sturm W. Aufmerksamkeitsstörungen. In: Sturm W, Herrmann M, Münte TF, Hrsg. Lehrbuch der Klinischen Neuropsychologie. 2. Aufl. Heidelberg: Spektrum; 2009. p. 421–43.Google Scholar
  75. Sturm W, Willmes K. On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage. 2001;14:S76–84.PubMedCrossRefGoogle Scholar
  76. Sturm W, de Simone A, Krause BJ, Specht K, Hesselmann V, Radermacher I, Herzog H, Tellmann L, Muller-Gartner HW, Willmes K. Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia. 1999;37:797–805.PubMedCrossRefGoogle Scholar
  77. Sturm W, Longoni F, Fimm B, Dietrich T, Weis S, Kemna S, Herzog H, Willmes K. Network for auditory intrinsic alertness: a PET study. Neuropsychologia. 2004;42:563–8.PubMedCrossRefGoogle Scholar
  78. Sundberg KA, Mitchell JF, Gawne TJ, Reynolds JH. Attention influences single unit and local field potential response latencies in visual cortical area v4. J Neurosci. 2012;32:16040–50.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M. A lateralized brain network for visuospatial attention. Nat Neurosci. 2011;14:1245–6.Google Scholar
  80. Thiebaut de Schotten M, Cohen L, Amemiya E, Braga LW, Dehaene S. Learning to read improves the structure of the arcuate fasciculus. Cereb Cortex. 2012. doi: 10.1093/cercor/bhs383 [Epub ahead of print].
  81. Toba MN, Cavanagh P, Bartolomeo P. Attention biases the perceived midpoint of horizontal lines. Neuropsychologia 2011;49:238–346.PubMedCrossRefGoogle Scholar
  82. Wilkins AJ, Shallice T, McCarthy R. Frontal lesions and sustained attention. Neuropsychologia. 1987;25:359–65.PubMedCrossRefGoogle Scholar
  83. Wyart V, Tallon-Baudry C. Neural dissociation between visual awareness and spatial attention. J N eurosci. 2008;28:2667–79.Google Scholar
  84. Yantis S. Attentional capture in vision. In: Kramer AF, Coles GH, Logan GD, editors. Converging operations in the study of visual selective attention. Washington, DC: American Psychological Association; 1995. p. 45–76.Google Scholar

Further Reading

  1. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28(1):403–50.Google Scholar
  2. Bartolomeo P, Lupiáñez J, editors. Inhibitory after-effects in spatial processing: Experimental and theoretical issues on inhibition of return. Hove: Psychology Press; 2006.Google Scholar
  3. Behrmann M, Geng JJ, Shomstein S. Parietal cortex and attention. Curr Opin Neurobiol. 2004;14(2):212–7.PubMedCrossRefGoogle Scholar
  4. Callejas A, Lupiáñez J, Funes MJ, Tudela P. Modulations among the alerting, orienting and executive control networks. Exp Brain Res. 2005;167(1):27–37.PubMedCrossRefGoogle Scholar
  5. Catani M, Thiebaut de Schotten M. Atlas of the human brain connections. Oxford: Oxford University Press; 2012.CrossRefGoogle Scholar
  6. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.Google Scholar
  7. Pashler HE. The psychology of attention. Cambridge, MA: MIT Press; 1998.Google Scholar
  8. Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012;35:73–89.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Robertson IH, Garavan H. Vigilant attention. In: Gazzaniga MS, editor. The cognitive neurosciences. 3rd ed. Cambridge, MA: MIT Press; 2004; p. 563–78.Google Scholar
  10. Schmahmann JD, Pandya DN. Fiber pathways of the brain. New York: Oxford University Press; 2006.Google Scholar
  11. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M. A lateralized brain network for visuospatial attention. Nat Neurosci. 2011;14(10):1245–6.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Paolo Bartolomeo
    • 1
    • 2
  1. 1.Brain and Spine Institute Hôpital de la SalpêtrièreInstitut national de la santé et de la recherche médicale (INSERM)ParisFrance
  2. 2.Department of PsychologyCatholic UniversityMilanItaly

Personalised recommendations