Skip to main content

Pathways to Terawatt Solar Photovoltaics

  • Chapter
  • First Online:
Terawatt Solar Photovoltaics

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

There are multiple roadblocks and bottlenecks for the current commercial solar cell technologies to become a noticeable source of energy in our future energy mix. Roadblocks represent showstoppers which we have to remove in order to move forward. Bottlenecks are difficulties which we would like to overcome, but we can live with if push comes to shove. For terawatt-scale deployment of solar photovoltaics, resource limitations are roadblocks, and cost and efficiency are bottlenecks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Geological Survey (2013) Mineral commodity summaries. Available at http://minerals.usgs.gov/minerals/pubs/mcs/2013/mcs2013.pdf

  2. Russell R, Tous L, Philipsen H, Horzel J, Cornagliotti E, Ngamo M, Choulat P, Labie R, Beckers J, Bertens J, Fujii M, John J, Poortmans J, Mertens R (2012) A simple copper metallization process for high cell efficiencies and reliable modules. In: Proceedings of the 27th European photovoltaic solar energy conference and exhibition, Frankfurt, pp 538–543

    Google Scholar 

  3. U.S. Geological Survey (2013) 2011 Minerals yearbook. Available at http://minerals.usgs.gov/minerals/pubs/commodity/myb/

  4. Kessler M, Munster D, Neubert T, Mader CP, Schmidt J, Brendel R (2011) High-efficiency back-junction silicon solar cell with an in-line evaporated aluminum front grid. In: Conference record of the 37th IEEE photovoltaic specialists conference, Seattle, pp 1085–1090

    Google Scholar 

  5. Sarti D, Einhaus R (2002) Silicon feedstock for the multi-crystalline photovoltaic industry. Sol Energy Mater Sol Cells 72:27–40

    Article  Google Scholar 

  6. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR (2008) New processes for the production of solar-grade polycrystalline silicon: a review. Sol Energy Mater Sol Cells 92:418–424

    Article  Google Scholar 

  7. Haynes WM (2013) CRC handbook of chemistry and physics, 94th edn. CRC Press, Boca Raton

    Google Scholar 

  8. Monnier R, Giacometti JC (1964) Recherches sur le raffinage electrolytique du silicium. Helv Chim Acta 47:345–353

    Article  Google Scholar 

  9. Cai J, Luo X-T, Haarberg GM, Kongstein OE, Wang S-L (2012) Electrorefining of metallurgical grade silicon in molten CaCl2 based salts. J Electrochem Soc 159:D155–D158

    Article  Google Scholar 

  10. Tao M (2013) Impurity segregation in electrochemical processes and its application to electrorefining of ultrapure silicon. Electrochim Acta 89:688–691

    Article  Google Scholar 

  11. Fell A, Mayer K, Hopman S, Kray D (2009) Potential and limits of chemical enhanced deep cutting of silicon with a coupled laser-liquid jet. J Laser Appl 21:27–31

    Article  Google Scholar 

  12. Bowden S, LeBeau J (2012) Laser wafering. In: Conference record of the 38th IEEE photovoltaic specialists conference, Austin, pp 1826–1829

    Google Scholar 

  13. Vallera AM, Alves JM, Serra JM, Brito MC, Gamboa RM (2007) Linear electric molten zone in semiconductors. Appl Phys Lett 90:232111-1-3

    Google Scholar 

  14. Fortunato E, Ginley D, Hosono H, Paine DC (2007) Transparent conducting oxides for photovoltaics. MRS Bull 32:242–247

    Article  Google Scholar 

  15. Zhou B (2013) Codoped zinc oxide by a novel co-spray deposition technique for solar cell applications. PhD dissertation, Arizona State University

    Google Scholar 

  16. U.S. Geological Survey (2002) Rare earth elements—critical resources for high technology. Available at http://pubs.usgs.gov/fs/2002/fs087-02/

  17. Alharbi F, Bass JD, Salhi A, Alyamani A, Kim H-C, Miller RD (2011) Abundant non-toxic materials for thin film solar cells: alternative to conventional materials. Renew Energy 36:2753–2758

    Article  Google Scholar 

  18. Xu Q, Huang B, Zhao Y, Yan Y, Noufi R, Wei S-H (2012) Crystal and electronic structures of CuxS solar cell absorbers. Appl Phys Lett 100:061906-1-3

    Google Scholar 

  19. Sun R, Ceder G (2011) Feasibility of band gap engineering of pyrite FeS2. Phys Rev B 84:245211-1-7

    Google Scholar 

  20. Hu J, Zhang Y, Law M, Wu R (2012) Increasing the band gap of iron pyrite by alloying with oxygen. J Am Chem Soc 134:13216–13219

    Article  Google Scholar 

  21. Xia C, Jia Y, Tao M, Zhang Q (2013) Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Phys Lett A 377:1943–1947

    Article  Google Scholar 

  22. Meyer BK, Merita S, Polity A (2013) On the synthesis and properties of ternary copper oxide sulfides (Cu2O1–xSx). Phys Status Solidi RRL 7:360–363

    Article  Google Scholar 

  23. Umezawa N, Janotti A, Rinke P, Chikyow T, van de Walle CG (2008) Optimizing optical absorption of TiO2 by alloying with TiS2. Appl Phys Lett 92:041104-1-3

    Article  Google Scholar 

  24. International Renewable Energy Agency (2012) Electricity storage—technology brief. Available at http://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP%20Tech%20Brief%20E18%20Electricity-Storage.pdf

  25. U.S. Energy Information Administration (2011) Annual energy review. Available at http://www.eia.gov/totalenergy/data/annual/index.cfm

  26. Lewis NS (2007) Powering the planet. MRS Bull 32:808–820

    Article  Google Scholar 

  27. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  28. de Levie R (1999) The electrolysis of water. J Electroanal Chem 476:92–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Tao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Tao, M. (2014). Pathways to Terawatt Solar Photovoltaics. In: Terawatt Solar Photovoltaics. SpringerBriefs in Applied Sciences and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5643-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5643-7_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5642-0

  • Online ISBN: 978-1-4471-5643-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics