Introduction to the Correspondence

  • Marc Barbut
  • Bernard Locker
  • Laurent Mazliak
Part of the Sources and Studies in the History of Mathematics and Physical Sciences book series (SHMP)

Abstract

The book’s introduction presents the main mathematical themes considered by Paul Lévy and Maurice Fréchet in their correspondence to one another and examines the scientific and institutional context in which their letters were exchanged during their nearly fifty years of correspondence.

The book is divided into helpful sections. A first section is devoted to a short presentation of Emile Borel and Jacques Hadamard, who were mentors to Lévy and Fréchet. The second section examines the probabilistic stage in France at the turn of the century, during which time Lévy and Fréchet were students. The third section studies several aspects of the probabilistic work in Russia and Soviet Union.

The authors have provided information on how Soviet Union became the center for the study of probability theory between the two world wars. The authors also examine the similarities between Lévy’s and Fréchet’s interests and the discovery of Lévy’s stable distributions.

Finally, three sections concentrate on the history of three major topics of Lévy’s studies in probability theory: potential theory, Brownian motion and stochastic integration.

Keywords

Dust Europe Covariance Income Assure 

References

  1. Aldrich J (2007) J Électron Hist Probab Stat 3(2) Google Scholar
  2. Bachelier L (1900) Théorie de la spéculation. Ann Sci Éc Norm Super 17:21–86 Google Scholar
  3. Barbut M, Mazliak L (2008) Commentary on the notes for Paul Lévy’s 1919 lectures on the probability calculus at the Ecole Polytechnique. J Électron Hist Probab Stat 4(1) Google Scholar
  4. Бернштейн СН (1917) Опыт аксиоматического обоснования теории вероятностей. Сообщение Харьковского Математического Общения 15 Google Scholar
  5. Бернштейн СН (1927) Современное состояние теории вероятностей и её приложений. In: Труды всероссийского съезда математиков. pp 50–63 Google Scholar
  6. Betti R (2010) La matematica come abitudine di pensiere. PRISTEM, Milano Google Scholar
  7. Blanc-Lapierre A, Fortet R (1953) Théorie des fonctions aléatoires. Masson, Paris Google Scholar
  8. Borel E (1972) Œuvres, Introduction et Bibliographie par M. Fréchet en 4 Tomes. CNRS, Paris Google Scholar
  9. Bouleau N (1986) La jonction entre la théorie du potentiel et des probabilités. Sémin Hist Math 8:43–62 Google Scholar
  10. Bouligand G (1926) Fonctions harmoniques. Principes de Picard et de Dirichlet. Mémorial des Sciences Mathématiques, vol XI. Gauthier-Villars, Paris Google Scholar
  11. Brelot M (1964) Eléments de théorie classique du potentiel. Centre de documentation universitaire, Paris Google Scholar
  12. Bru B (1999) Borel, Lévy, Neyman, Pearson et les autres. Matapli 60:51–60 Google Scholar
  13. Bru B (2001) Bachelier et son époque: une conversation avec Bernard Bru par Mourad Taqqu. J Soc Fr Stat 142:3–40 Google Scholar
  14. Bru B, Bru M-F, Chung KL (2009) Borel and the St Petersburg martingale. J Électron Hist Probab Stat 5(1) Google Scholar
  15. Catellier R, Mazliak L (2012) The emergence of French probabilistic statistics. Borel and the Institut Henri Poincaré around the 1920s. Rev Histoire Math 18:271–335 Google Scholar
  16. Chaumont L, Mazliak L, Yor M (2007) Some aspects of the probabilistic works. In: Charpentier E, Lesne A, Nikolski NK (eds) Kolmogorov’s heritage in mathematics. Springer, London Google Scholar
  17. Choquet G (1990) La vie et l’œuvre de Marcel Brelot. Sémin Hist Math 11:1–31 Google Scholar
  18. Chung KL (1995) Green, Brown and probability. World Scientific, Singapore CrossRefGoogle Scholar
  19. Collective (1948) Математика в СССР за 30 лет. Государственное издание технической теоретической литературы, Москва Google Scholar
  20. Courtault J-M, Kabanov Y (2002) Louis Bachelier: Aux origines de la finance mathématique. Presses Univ. Franc-Comtoises, Besancon Google Scholar
  21. De la Pradelle A (1988) Potentiel. Encyclopedia Universalis, Paris Google Scholar
  22. Dellacherie C (1980) Un survol de la théorie de l’intégrale stochastique. Stoch Process Appl 10:115–144 CrossRefGoogle Scholar
  23. Dellacherie C, Meyer P-A (1975) Probabilités et Potentiel (4 tomes, 1975–1990). Hermann, Paris Google Scholar
  24. Демидов СС, Левшин БВ (1999) Дело академика Н.Н. Лузина. РХГИ, Москва Google Scholar
  25. Демидов СС, Паршин АН, Половинкин СМ (1989) О переписке Н.Н. Лузина с П.А. Флоренским. Историческо-Математические Исследования 31:116–124 Google Scholar
  26. Dieudonné J (1978) Abrégé d’histoire des mathématiques. Hermann, Paris Google Scholar
  27. Doob JL (1953) Stochastic processes. Wiley, New York Google Scholar
  28. Doob JL (1980) Classical potential theory and its probabilistic counterpart. Springer, New York Google Scholar
  29. Dugac P (2003) Les mathématiques dans la vie de leur temps, autour de la notion de limite et de voisinage. Vuibert, Paris Google Scholar
  30. Durand A, Mazliak L (2011) Volterra’s Prolusione as a source of Borel’s interest for probability. Centaurus 53:306–333 CrossRefGoogle Scholar
  31. Einstein A (1905) Über die von der molekularkinetischen Theorie des Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 19:549–560 CrossRefGoogle Scholar
  32. Fortet R (1948) Opinions modernes sur les fondements du Calcul des Probabilités. In: Le Lionnais F (ed) Les grands courants de la pensée mathématique. Hermann, Paris Google Scholar
  33. Fréchet M (1955) Les mathématiques et le concret. Presses Universitaires de France, Paris Google Scholar
  34. Fréchet M, Halbwachs M (1924) Le calcul des probabilités à la portée de tous. Dunod, Paris Google Scholar
  35. Graham LR (1993) Science in Russia and the Soviet Union. Cambridge University Press, Cambridge Google Scholar
  36. Guiraldencq P (1999) Emile Borel. L’espace et le temps d’une vie sur deux siècles. Librairie Blanchard, Paris Google Scholar
  37. Havlova V, Mazliak L, Šišma P (2005) Le début des relations mathématiques franco-tchécoslovaques vu à travers la correspondance Fréchet-Hostinský. J Électron Hist Probab Stat 1(1) Google Scholar
  38. Hawkins T (1970) Lebesgue’s theory of integration. Chelsea, New York Google Scholar
  39. Itô K, Mc Kean HP Jr (1965) Diffusion processes and their sample paths. Springer, New York CrossRefGoogle Scholar
  40. Kahane J-P (1998) Le Mouvement Brownien, Matériaux pour l’histoire des mathématiques au XXème siècle. Société Mathématique de France, Paris Google Scholar
  41. Kakutani S (1944a) On Brownian motion in n-space. Proc Imp Acad (Tokyo) 20:648–652 CrossRefGoogle Scholar
  42. Kakutani S (1944b) Two-dimensional Brownian motion. Proc Imp Acad (Tokyo) 20:706–714 CrossRefGoogle Scholar
  43. Хинчин АЯ (1926) Идеи интуиционизма и борьба за предмет в современной математике. Вестник Коммунистической Академии 16:184-192 Google Scholar
  44. Колмогоров АН (1925) О принципе tertium non datur. Математический Сборник Google Scholar
  45. Колмогоров АН (1933) Grundbegriffe der Warscheinlichkeitsrechnung. Springer, Berlin Google Scholar
  46. Колмогоров АН (1947) Роль русской науки в развитии теории вероятностией. Ученные Записки МГУ 91 Google Scholar
  47. Lévy P (1911) Les équations intégro-différentielles définissant des fonctions de ligne. Thèse de la Faculté des sciences, Paris Google Scholar
  48. Lévy P (1922) Leçons d’Analyse Fonctionnelle. Gauthier-Villars, Paris Google Scholar
  49. Lévy P (1925) Calcul des probabilités. Gauthier-Villars, Paris Google Scholar
  50. Lévy P (1937) Théorie de l’Addition des Variables aléatoires. Gauthier-Villars, Paris Google Scholar
  51. Lévy P (1940) Le mouvement brownien plan. Am J Math 62:487–550 CrossRefGoogle Scholar
  52. Lévy P (1948) Processus stochastiques et Mouvement brownien. Gauthier-Villars, Paris Google Scholar
  53. Lévy P (1970) Quelques aspects de la pensée d’un mathématicien. Blanchard, Paris Google Scholar
  54. Locker B (2001) Paul Lévy: la période de guerre. Thèse, Université Paris V Google Scholar
  55. Loève M (1973) Paul Lévy (1886–1971). Ann Probab 1:1–18 CrossRefGoogle Scholar
  56. Maashal M (1999) Bourbaki, une secte de mathématiciens. Pour la Science, Paris Google Scholar
  57. Mandelbrot B (1975) Les objets fractals. Flammarion, Paris Google Scholar
  58. Maz’ja V, Shaposhnikova T (1998) Jacques Hadamard: a universal mathematician. Am Math Soc, Providence Google Scholar
  59. Mazliak L (2007) On the exchanges between Wolfgang Doeblin and Bohuslav Hostinský. Rev Histoire Math 13:155–180 Google Scholar
  60. Mazliak L (2009) How Paul Lévy saw Jean Ville and martingales. J Électron Hist Probab Stat 5(1) Google Scholar
  61. Mazliak L (2011) The ghosts of the ecole normale, life, death and destiny of René Gateaux (to appear). http://arxiv.org/abs/math/0701490
  62. Mazliak L (2014) Poincaré’s odds. In: Duplantier B, Rivasseau V (eds) ‘Poincaré, 1912–2012’, Poincaré seminar XVI, 24 November 2012. Progress in mathematical physics. Birkhäuser, Basel Google Scholar
  63. Mazliak L, Shafer G (2011) What does the arrest and release of Emile Borel and his colleagues in 1941 tell us about the German Occupation of France? Sci Context 24:587–623 CrossRefGoogle Scholar
  64. Mazliak L, Tazzioli R (2009) Mathematicians at war. Springer, Dordrecht CrossRefGoogle Scholar
  65. Nevanlinna R (1936) Eindeutige analytische Funktionen. Springer, Berlin Google Scholar
  66. Perrin J (1912) Les atomes. Félix Alcan, Paris Google Scholar
  67. Petrovski IG (1933) Über das Irrfahrtproblem. Math Ann 109:425–444 Google Scholar
  68. Petrovski IG (1935) Zür ersten Randvertaufgabe der wärmeleitungsgleischung. Compos Math 1:383–419 Google Scholar
  69. Picard E (1941) La vie et l’œuvre de Paul Villard et de Georges Gouy. Mém Acad Sci Paris 63:21–24 Google Scholar
  70. Pier J-P (1994) Developments of mathematics 1900–1950. Birkhaüser, Basel Google Scholar
  71. Protter P (1990) Stochastic integration and differential equations. Springer, New York CrossRefGoogle Scholar
  72. Seneta E, Markov AA (2001). In: Heyde CC, Seneta E (eds) Statisticians of the centuries. Springer, New York Google Scholar
  73. Shiryaev AN (1989) Kolmogorov: life and creative activities. Ann Probab 17(3):866–944 CrossRefGoogle Scholar
  74. Слуцкий ЕЕ (1912) Теория корреляции и элементы учения о кривых распределения. Известия Киевского Коммерческого Института Google Scholar
  75. Taton R (1961) Histoire générale des Sciences. La science contemporaine (tomes III-1 et III-2; 1961–1964). Presses Universitaires de France, Paris Google Scholar
  76. Вавилов С (1946) Советская наука на новом этапе. Издательство Академия Наук, СССР Google Scholar
  77. Von Plato J (1994) Creating modern probability. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  78. Vucinich A (1999) Mathematics and dialectics in the Soviet Union: the pre-Stalin period. Hist Math 26:107–124 CrossRefGoogle Scholar
  79. Wiener N (1923) Differential space. J Math Phys 58:131–174 Google Scholar
  80. Юшкевич АА (1968) История математики в России до 1917 года. Гл. 19: Теория вероятностей. Наука, Москва Google Scholar
  81. Žust M (2002) À la recherche de la vérité vivante. L’expérience religieuse de Pavel A Florenskij (1882–1937). Липа, Роме Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Marc Barbut
    • 1
  • Bernard Locker
    • 2
  • Laurent Mazliak
    • 3
  1. 1.(deceased), Professor Barbut wrote this while at EHESSParisFrance
  2. 2.UFR de MathématiquesUniversité René DescartesParisFrance
  3. 3.Laboratoire de Probabilités et Modèles AléatoiresUniversité Pierre et Marie CurieParisFrance

Personalised recommendations