Skip to main content

Renewable and Conventional Electricity Generation Systems: Technologies and Diversity of Energy Systems

  • Chapter
  • First Online:
Renewable Energy Governance

Part of the book series: Lecture Notes in Energy ((LNEN,volume 23))

Abstract

In this chapter, the primary technical aspects of conventional and renewable energy systems are presented. The description focuses on commercial systems installed across the world, together with a brief introduction to some promising technologies currently under development, such as Carbon Capture and Storage (CCS). Conventional energy systems include power plants using fossil fuels (natural gas, coal, etc.), while renewable energy systems include solar, wind, geothermal, biomass, and small-hydropower applications. These technologies are briefly described accompanied by economic figures (installation cost, fuel cost, specific cost of electricity, etc.) and emissions data (where applicable). Some insight on the energy strategy in specific countries is provided and how this can be related to local conditions and electric power requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agraniotis M, Koumanakos A, Doukelis A, Karellas S, Kakaras E (2012) Investigation of technical and economic aspects of pre-dried lignite utilisation in a modern lignite power plant towards zero CO2 emissions. Energy 45(1):134–141

    Article  Google Scholar 

  • Anagnostopoulos JS, Papantonis DE (2007) Optimal sizing of a run-of-river small hydropower plant. Energy Convers Manage 48(10):2663–2670

    Article  Google Scholar 

  • Black J (2010) Cost and performance baseline for fossil energy plants. Volume 1: bituminous coal and natural gas to electricity. US Department of Energy, NETL REPORT-2010/1397

    Google Scholar 

  • Bolinger M, Wiser R (2012) Understanding wind turbine price trends in the U.S. over the past decade. Energy Policy 42:628–641

    Article  Google Scholar 

  • Branker K, Pathak MJM, Pearce JM (2011) A review of solar photovoltaic levelized cost of electricity. Renew Sustain Energy Rev 15(9):4470–4482

    Article  Google Scholar 

  • Bugge J, Kjær S, Blum R (2006) High-efficiency coal-fired power plants development and perspectives. Energy 31(10–11):1437–1445

    Article  Google Scholar 

  • Campos Rodríguez CE, Escobar Palacio JC, Venturini OJ, Silva Lora EE, Melián Cobas V, Marques dos Santos D, Lofrano Dotto FR, Gialluca V (2013) Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Appl Therm Eng 52(1):109–119

    Google Scholar 

  • De Sa A, Al Zubaidy S (2011) Gas turbine performance at varying ambient temperature. Appl Therm Eng 31:2735–2739

    Article  Google Scholar 

  • Dipippo R (2012) Geothermal power plants: principles, applications, case studies and environmental impact, 3rd edn. Butterworth-Heinemann, USA

    Google Scholar 

  • Dipippo R (2004) Second Law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics 33(5):565–586

    Article  Google Scholar 

  • Environmental Protection Agency (2008) Energy and environmental analysis. technology characterization: reciprocating engines. Combined heat and power partnership program. http://www.epa.gov/chp/documents/catalog_chptech_reciprocating_engines.pdf

  • European Small Hydropower Association (2013) SHP in figures. http://www.esha.be/about/about-small-hydropower/small-hydropower-in-figures.html

  • Gewald D, Siokos K, Karellas S, Spliethoff H (2012) Waste heat recovery from a landfill gas-fired power plant. Renew Sustain Energy Rev 16(4):1779–1789

    Article  Google Scholar 

  • Global Wind Energy Council (GWEC) (2013) Global status overview. http://www.gwec.net/global-figures/wind-energy-global-status/

  • Henningsen S (1998) Chapter 14: Air pollution from large two-stroke diesel engines and technologies to control it. In: Handbook of air pollution from internal combustion engines. ISBN: 978-0-12-639855-7

    Google Scholar 

  • Hernández-Moro J, Martínez-Duart JM (2013) Analytical model for solar PV and CSP electricity costs: present LCOE values and their future evolution. Renew Sustain Energy Rev 20:119–132

    Article  Google Scholar 

  • Horlock JH (2003) Advanced gas turbine cycles. Pergamon Press, Pergamon

    Google Scholar 

  • Hu Z, Wang J, Byrne J, Kurdgelashvili L (2013) Review of wind power tariff policies in China. Energy Policy 53:41–50

    Article  Google Scholar 

  • International Maritime Organization (IMO) (2013) Air pollution and greenhouse gas emissions. http://www.imo.org/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Default.aspx

  • Independent Power Transmission Operator (IPTO) of Greece (2013) Interconnections net flows. http://www.admie.gr/en/operations-data/system-operation/real-time-data/reports/

  • Jäger-Waldau A, Monforti-Ferrario F, Banja M, Bloem H, Arantegui RL, Szabó M (2012) Renewable energy snapshots 2012. JRC Scientific and Technical Reports, European Commission, EUR 25756 EN, JRC 77772. http://publications.jrc.ec.europa.eu/repository/handle/111111111/27434

  • Kakaras E, Doukelis A, Prelipceanu A, Karellas S (2006) Inlet air cooling methods for gas turbine based power plants. J Eng Gas Turbines Power 128:312–317

    Article  Google Scholar 

  • Kaplan S (2008) Power Plants: characteristics and costs. CRS Report for Congress, RL34746

    Google Scholar 

  • Karellas S, Boukis I, Kontopoulos G (2010) Development of an investment decision tool for biogas production from agricultural waste. Renew Sustain Energy Rev 14(4):1273–1282

    Google Scholar 

  • Kosmadakis G, Manolakos D, Papadakis G (2011) Simulation and economic analysis of a CPV/thermal system coupled with an organic Rankine cycle for increased power generation. Sol Energy 85(2):308–324

    Article  Google Scholar 

  • Montes MJ, Rovira A, Muñoz M, Martínez-Val JM (2011) Performance analysis of an integrated solar combined cycle using Direct Steam Generation in parabolic trough collectors. Appl Energy 88(9):3228–3238

    Article  Google Scholar 

  • National Renewable Energy Laboratory (NREL) (2012a) Concentrating solar power projects in the United States. http://www.nrel.gov/csp/solarpaces/by_country_detail.cfm/country=US%20%28%22_self%22%29

  • National Renewable Energy Laboratory (NREL) (2012b) Concentrating solar power projects in Spain. http://www.nrel.gov/csp/solarpaces/by_country_detail.cfm/country=ES

  • Pérez-Higueras P, Muñoz E, Almonacid G, Vidal PG (2011) High Concentrator PhotoVoltaics efficiencies: present status and forecast. Renew Sustain Energy Rev 15(4):1810–1815

    Article  Google Scholar 

  • Rentizelas A, Karellas S, Kakaras E, Tatsiopoulos I (2009) Comparative techno-economic analysis of ORC and gasification for bioenergy applications. Energy Convers Manage 50(3):674–681

    Article  Google Scholar 

  • RWE (2008) The WTA technology, an advanced method of processing and drying lignite. Information brochure. http://www.rwe.com/web/cms/en/77254/rwe-power-ag/power-plant-new-build/wta-plant/

  • Skoplaki E, Palyvos JA (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83(5):614–624

    Article  Google Scholar 

  • Spath PL, Mann MK (2000) Life cycle assessment of a natural gas combined-cycle power generation system. National Renewable Energy Laboratory. Task No. BP00.1030. http://www.nrel.gov/docs/fy00osti/27715.pdf

  • Steinke F, Wolfrum P, Hoffmann C (2013) Grid versus storage in a 100% renewable Europe. Renewable Energy 50:826–832

    Article  Google Scholar 

  • Stürmer B, Schmid E, Eder MW (2011) Impacts of biogas plant performance factors on total substrate costs. Biomass and Bioenergy 35(4):1552–1560

    Google Scholar 

  • Torrero E (2003) Costs of utility distributed generators, 1–10 MW: Twenty-Four Case Studies. Electric Power Research Institute (EPRI). Technical update. http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001007760

  • Viebahn P, Lechon Y, Trieb F (2011) The potential role of concentrated solar power (CSP) in Africa and Europe: a dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 39(8):4420–4430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kosmadakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kosmadakis, G., Karellas, S., Kakaras, E. (2013). Renewable and Conventional Electricity Generation Systems: Technologies and Diversity of Energy Systems. In: Michalena, E., Hills, J. (eds) Renewable Energy Governance. Lecture Notes in Energy, vol 23. Springer, London. https://doi.org/10.1007/978-1-4471-5595-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5595-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5594-2

  • Online ISBN: 978-1-4471-5595-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics