Skip to main content

Fabrication Technologies for ThO2-based Fuel

  • Chapter
  • First Online:
Book cover Thoria-based Nuclear Fuels

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Fuel fabrication technology, particularly once through utilization of uranium, has been mastered over the years. However, with the increasing demand of electricity at an affordable cost and depleting resources of uranium, introduction of thorium in the fuel cycle has become essential. The large-scale utilization of thorium requires adoption of closed fuel cycle scheme. Many of the fuel cycle technologies developed for uranium can be readily adopted for thorium, however, the man-rem problem associated with this fuel is a major concern. Therefore, fuel fabricators have, in recent past, initiated new R&D programs to solve this problem either through elimination of powder handling or making the unit operations of the production process amenable to remote handling and automation.

The status of development of these processes worldwide will be discussed in this chapter. Each process will be discussed in detail and its ability to achieve the desired objectives, particular related to reduction of man-rem exposure to the operator, will be critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IAEA-TECDOC-1450 (2005) Thorium fuel cycle-potential benefits and challenges. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  2. Lung M, Gremn O (1998) Perspectives of the thorium fuel cycle. Nucl Eng Des 180:133–146

    Article  Google Scholar 

  3. Nuclear Energy Series No NF-T-2.4 (2012) Role of thorium to supplement fuel cycles of future nuclear energy systems. IAEA, Vienna

    Google Scholar 

  4. Lung M (1997). A present review of the thorium nuclear fuel cycles. European Commission Report EUR-17771, Luxembourg

    Google Scholar 

  5. Kazimi MS, Driscoll MJ, Ballinger RG, Clarno KT, Czerwinski KR, Hejzlar P, LaFond PJ, Long Y, Meyer JE, Reynard MP, Schultz SP, Zhao X (1999) Proliferation resistant, low cost, Thoria-Urania fuel for light water reactors. Annual Report, Nuclear Engineering, MIT, Cambridge

    Google Scholar 

  6. Kazimi MS, Pilat EE, Driscoll MJ, Xu Z, Wang D, Zhao X (2001) Enhancing proliferation resistance in advanced light water reactor fuel cycles. In: International conference: back-end of the fuel cycle: from research to solutions, Global 2001, Paris

    Google Scholar 

  7. MacDonald PE (1999) advanced proliferation resistant, lower cost, uranium-thorium dioxide fuels for light water reactors. NERI 99-0153

    Google Scholar 

  8. Kazimi MS, Czerwinski KR, Driscoll MJ, Hejzlar P, Meyer JE (1999) On the use of thorium in light water reactors. MIT-NFC-0016

    Google Scholar 

  9. Kang J, Von Hippel FN (2001) U-232 and the proliferation-resistance of U-233 in spent fuel. Sci Global Secur 9:1–32

    Article  Google Scholar 

  10. Brooksbank RE, Parrott JR, Youngblood EL, McDuffee WT (1974) The containment of 233U in the processing facilities of the ORNL pilot plant. In: Conf-740523-1, VII International Congres of Societe Francaise de Radioprotection, Versailles, France

    Google Scholar 

  11. Parrott Sr JH, McDuffee WT, Nicol RG, Whitson WR, Krichnisky AM (1979) The preparation of kilogram quantities of 233UO2 for LWBR demonstration programme. ORNL/CF-79/279

    Google Scholar 

  12. Brooksbank RE et al (1966) The impact of kilorod facility operational experience on the design of fabrication plants for 233U/Th fuels. In: 2nd international conference of thorium fuel cycle, Gatlinburg

    Google Scholar 

  13. Haws CC, Matheme JL, Miles FW, Van Cleve JE (1965) Summary of the Kilorod project. ORNL-3681

    Google Scholar 

  14. Belle J, Berman RM (1984) Thorium dioxide: properties and nuclear applications. Naval Reactors Office, DOE. Government Printing Office, Washington, DC

    Google Scholar 

  15. Sease JD, Pratt RB, Lotts AL (1966) Remote fabrication of thorium fuels. ORNL-TM-1501

    Google Scholar 

  16. Brooksbank RE, McDuffee WT, Rainey RH (1978) A review of thorium fuel reprocessing experience, ORNL. In: Conf. 780223-3

    Google Scholar 

  17. Hart PE et al (1979) ThO2-based pellet fuels, their properties, methods of fabrication, and irradiation performance: a critical assessment of the state of the technology and recommendations for further work. PNL-3064

    Google Scholar 

  18. Hart PE (1979) Thoria development activities. PNL-2973

    Google Scholar 

  19. Kantan SK, Raghavan RV, Tendolkar GS (1958) Sintering of thorium and thoria. In: Proceedings of 2nd UN international conference on peaceful use of atom, Geneva, vol 6, pp 132–138

    Google Scholar 

  20. White GD, Bray LA, Hart PE (1980) Optimization of thorium oxalate precipitation conditions relative to thorium oxide sinterability. PNL-3263

    Google Scholar 

  21. Balakrishna P, Varma BP, Krishnan TS, Mohan TRR, Ramakrishnan P (1988) Thorium oxide: calcination, compaction and sintering. J Nucl Mater 160:88–94

    Article  Google Scholar 

  22. Mohan A, Moorthy VK (1971) Studies on sintering of nuclear fuel materials -sintering behavior of Urani–Thoria mixtures. BARC-568, Bombay, India

    Google Scholar 

  23. Pope JM, Radford KC (1974) Physical properties of some thoria powders and their influence on sinterability. J Nucl Mater 52:241–254

    Article  Google Scholar 

  24. Johnson RGR (1966) Fabrication of fuel pellets from pot process denitrated ThO2 powder. WAPD-TM-577

    Google Scholar 

  25. Harada Y, Baskin Y, Handwerk JH (1962) Calcination and sintering study of thoria. J Am Ceram Soc 45:253–257

    Article  Google Scholar 

  26. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas IE, Exarhos GJ (1990) Glycine-Nitrate combustion synthesis of oxide ceramic powders. Mater Lett 10:6–12

    Article  Google Scholar 

  27. Chandramouli V, Anthonysamy S, Vasudeva Rao PR (1999) Combustion synthesis of thoria, a feasibility study. J Nucl Mater 265:255–261

    Article  Google Scholar 

  28. Purohit RD, Saha S, Tyagi AK (2001) Nanocrystalline thoria powders via Glycine–Nitrate combustion. J Nucl Mater 288:7–10

    Article  Google Scholar 

  29. Ananthasivan K, Anthonysamy S, Singh A, Vasudeva Rao PR (2002) De-agglomeration of thorium oxalate—a method for the synthesis of sinter active thoria. J Nucl Mater 306:1–9

    Article  Google Scholar 

  30. Burke TJ (1982) Fabrication of high-density ThO2 fuel pellets from freeze-dried granular feed. WAPD-TM-1524

    Google Scholar 

  31. Olander DR (1976) Fundamental aspects of nuclear reactor fuel elements. TID-26711-P1: p 145. DOE

    Google Scholar 

  32. Bairiot H (1999) MOX fuel cycle technologies for medium and long term deployment. In: IAEA proceedings of symposium on C&S papers, 2000, Vienna, vol 3, pp 81–101

    Google Scholar 

  33. Hugelmann D, Greneche D (1999) MOX fuel cycle technologies for medium and long term deployment. In: IAEA proceedings of symposium on C&S papers, 2000, Vienna, vol 3, pp 102–108

    Google Scholar 

  34. Wilson PD (1996) The nuclear fuel cycle: From ore to waste. Oxford University Press, Oxford

    Google Scholar 

  35. Zakharkin BS (1999) MOX fuel cycle technologies for medium and long term deployment. In: IAEA proceedings of symposium on C&S papers, 2000, Vienna, vol 3, pp 146–149

    Google Scholar 

  36. Kutty TRG, Khan KB, Achuthan PV, Dhami PS, Dakshinamoorthy A, Somayajulu PS, Panakkal JP, Kumar A, Kamath HS (2009) Characterization of ThO2–UO2 pellets made by co-precipitation process. J Nucl Mater 389:358

    Article  Google Scholar 

  37. Radford KC, Bratton RJ (1975) Properties, blending and homogenization of (U, Th)O2–UO2 powder. J Nucl Mater 57:287–302

    Article  Google Scholar 

  38. Atlas Y, Eral M, Tel H (1997) Preparation of homogeneous (Th0.8U0.2)O2 pellets via coprecipitation of (Th, U)(C2O4)2·nH2O powders. J Nucl Mater 249:46–51

    Article  Google Scholar 

  39. White GD, Bray LA, Hart PE (1981) Optimization of thorium oxalate precipitation conditions relative to derived oxide sinterability. J Nucl Mater 96:305–313

    Article  Google Scholar 

  40. Argo L (2003) Experimental determination of the dry oxidation behavior of a compositional range of Uranium-Thorium mixed-oxide pellet fragments. Dissertation, University of Florida

    Google Scholar 

  41. Dhami PS, Kannan R, Rao KS, Shyam Lal R, Kumarguru K, Ajithlal RT, Sinalkar N, Dakshinamoorthy A, Jambunathan U, Dey PK (2005) Preparation of Thorium–Uranium mixed oxide fuel, NUCAR 2005, Amritsar, p 215

    Google Scholar 

  42. Chandramouli V, Anthonysamy S, Vasudeva Rao PR, Divakar R, Sundararaman D (1998) Microwave synthesis of solid solutions of urania and thoria—a comparative study. J Nucl Mater 254:55–64

    Article  Google Scholar 

  43. Anthonysamy S, Ananthasivan K, Chandramouli V, Kaliappan I, Vasudeva Rao PR (2000) Combustion synthesis of urania–thoria solid solutions. J Nucl Mater 278:346–357

    Article  Google Scholar 

  44. Ananthasivan K, Anthonysamy S, Sudha C, Terrance ALE, Vasudeva Rao PR (2002) Thoria doped with cations of group VB–synthesis and sintering. J Nucl Mater 300:217–229

    Article  Google Scholar 

  45. Clayton JC (1976) Thorium oxide powder properties which are important to ThO2 and ThO2-UO2 fuel pellet fabrication. WAPD-TM-1230

    Google Scholar 

  46. Mathews RB, Davis NC (1979) Fabrication of ThO2 and ThO2-UO2 pellets for proliferation resistant fuels. Pacific Northwest Laboratory PNL-3210

    Google Scholar 

  47. Curtis CE, Johnson JR (1954) Interim report properties of thorium oxide Ceramics. ORNL-1809

    Google Scholar 

  48. Clayton JC (1994) Chemical reactions during ThO2 and ThO2-UO2 fuel fabrication. WAPD-TM-3020

    Google Scholar 

  49. Kang KW, Yang JH, Kim KS, Song KW, Lee CH, Jung YH (2003) (Th, U)O2 pellets: fabrication and thermal properties. J Kor Nucl Soc 35:299–308

    Google Scholar 

  50. Shiratori T, Fukuda K (1993) Fabrication of very high density fuel pellets of thorium dioxide. J Nucl Mater 202:98–103

    Article  Google Scholar 

  51. Kutty TRG, Hegde PV, Banerjee J, Khan KB, Jain GC, Sengupta AK, Majumdar S, Kamath HS (2003) Densification behaviour of ThO2–PuO2 pellets with varying PuO2 content using dilatometry. J Nucl Mater 312:224–235

    Article  Google Scholar 

  52. Balakrishna P (1987) In: Sintering of uranium dioxide: an introduction. Nuclear Fuels Complex, Hyderabad, p 28

    Google Scholar 

  53. Nair MR, Basak U, Ramachandran R, Majumdar S (1999) Sintering of ThO2, ThO2-UO2, ThO2-PuO2 fuel pellets with additives. Trans Powder Metall Assoc India 26:53

    Google Scholar 

  54. Hj Matzke (1981) p 156. In: Sorensen T (ed) Non-stoichiometric oxides. Academic Press, New York

    Google Scholar 

  55. Balakrishna P, Somauajulu GVSRK, Krishnan TS, Mohan TRR, Ramakrishnan P (1991) p 2995. In: Vincenzini P (ed) Ceramics today–tomorrow’s ceramics. Elsevier, Netherlands

    Google Scholar 

  56. Kutty TRG, Hegde PV, Keswani R, Khan KB, Majumdar S, Purushotham DSC (1999) Densification behaviour of UO2–50%PuO2 pellets by dilatometry. J Nucl Mater 264:10–19

    Article  Google Scholar 

  57. Matzke HJ (1966) On the effect of TiO2 additions on defect structure, sintering and gas release of UO2. AECL-2585

    Google Scholar 

  58. Sbbharao EC, Sutter PH, Hrizo J (1965) Defect structure and electrical conductivity of ThO2-Y2O3 solid solutions. J Am Ceram Soc 48:443–446

    Article  Google Scholar 

  59. Bransky I, Tallan NM (1970) Electrical properties and defect structure of ThO2. J Am Ceram Soc 53:625–629

    Article  Google Scholar 

  60. Upadhyaya DD, Sunta CM (1985) Defect interactions and TL behaviour in thoria. J Nucl Mater 127:137–140

    Article  Google Scholar 

  61. Balakrishna P, Ananthapadmanabhan PV, Ramakrishnan P (1994) Electrical conductivity of sintered niobia-doped and magnesia-doped thoria. J Mater Sci Lett 13:86–88

    Article  Google Scholar 

  62. Kutty TRG, Khan KB, Kumar A, Kamath HS (2009) Densification strain rate in sintering of ThO2 and ThO2-0.25%Nb2O5 pellets. Sci Sinter 41:103–115

    Article  Google Scholar 

  63. Kakodkar A (2002) The twin challenges of abundant nuclear energy supply and proliferation risk reduction—a view. In: 46th general conference on IAEA, Vienna

    Google Scholar 

  64. Kamath HS (2003) Development and microstructural characterization of ThO2-UO2 Fuels. In: 14th annual conference on Indian nuclear society, IGCAR, Kalpakkam

    Google Scholar 

  65. Sinha RK, Kakodkar A (2006) Design and development of the AHWR-the Indian thorium fuelled innovative nuclear reactor. Nucl Eng Des 236:683–700

    Article  Google Scholar 

  66. Anantharaman K, Shivakumar V, Sinha RK (2002) Design and fabrication of AHWR fuels. In: International conference on characterization and quality control of nuclear fuels (CQCNF2002), Hyderabad, India

    Google Scholar 

  67. Kutty TRG, Somayajulu PS, Mukherjee SK, Panakkal JP, Vaidya VN, Majumdar S, Kamath HS (2002) Densification behaviour ThO2-UO2 pellets fabricated by four different routes. In: 68th annual technical meeting of Indian ceramic society ICCP-04 2004, Mumbai

    Google Scholar 

  68. Kutty TRG, Kumar A, Panakkal JP, Kamath HS (2010) Development and microstructural characterization of ThO2-UO2 fuels. BARC Newsl 314:28

    Google Scholar 

  69. Kutty TRG, Hegde PV, Khan KB, Jarvis T, Sengupta AK, Majumdar S, Kamath HS (2004) Characterization and densification studies on ThO2-UO2 pellets derived from ThO2 and U3O8 powders. J Nucl Mater 335:462–470

    Article  Google Scholar 

  70. Hoekstra HR, Siegel S, Fuchs LH, Katz JJ (1955) The uranium–oxygen system: UO2.5 to U3O8. J Phys Chem 59:136–138

    Article  Google Scholar 

  71. Karkhanavala MD, George AM (1966) δ-U3O8, A high temperature modification: Part I: preparation and characterization. J Nucl Mater 19:267–273

    Article  Google Scholar 

  72. Labroche D, Dugne O, Chatillon C (2003) Thermodynamic properties of the O-U system. Part II: critical assessment of the stability and composition range of the oxides UO2 + x, U4O9 − y and U3O8 − z. J Nucl Mater 312:50–66

    Article  Google Scholar 

  73. Chevrel H, Dehaudt P, Francois B, Baumard JF (1992) J Nucl Mater 189:175–182

    Article  Google Scholar 

  74. Hund F, Niessen G (1952) Anomalous solid solution in the system. Thorium oxide-uranium oxide. Z Elecrochem 56:972–979

    Google Scholar 

  75. Harada Y (1997) UO2 sintering in controlled oxygen atmospheres of three-stage process. J Nucl Mater 245:217–223

    Article  Google Scholar 

  76. Paul R, Keller C (1971) Phasengleichgewichte in den systemen UO2-UO2,67-ThO2 und UO2 + x-NPO2. J Nucl Mater 41:133–142

    Article  Google Scholar 

  77. Rand MH (1975) Thermochemical properties. In: Kubaschewski O (ed) Thorium: physico-chemical properties of its compounds and alloys. Atomic energy review, vol 5. IAEA, Vienna, p 7

    Google Scholar 

  78. Mathews JR (1987) The technological problems and the future of research on the basic properties of actinide oxides. J Chem Soc, Faraday Trans 83(2):1273–1285

    Article  Google Scholar 

  79. Belle J, Lustman B (1958) In: Properties of UO2, Fuel elements conference, Paris, TID-7546, p 442

    Google Scholar 

  80. Ackermann RJ, Chang AT (1973) Thermodynamic characterization of U3O8-Z phase. J Chem Thermodyn 5:873–890

    Article  Google Scholar 

  81. Cordfunke EHP, Aling P (1965) System UO3 + U3O8: dissociation pressure of γ-UO3. Trans Faraday Soc 61:50–53

    Article  Google Scholar 

  82. Glasser Leme D, Hj Matzke (1983) The diffusion of uranium in U3O8. J Nucl Mater 115:350–353

    Article  Google Scholar 

  83. Hj Matzke (1990) Atomic mechanisms of mass transport in ceramic nuclear fuel materials. J Chem Soc, Faraday Trans 86:1243–1256

    Article  Google Scholar 

  84. Khan KB, Kutty TRG, Somayajulu PS, Sengupta AK, Panakkal JP, Majumdar S, Kamath HS (2005) Fabrication and characterization of ThO2-UO2 pellets made by co-precipitation process. In: characterization and quality control of nuclear fuels (CQCNF-2005), Hyderabad

    Google Scholar 

  85. Assmann H, Doerr W, Peehs M (1986) Control of UO2 microstructure by oxidative sintering. J Nucl Mater 140:1–6

    Google Scholar 

  86. Song KW, Kim KS, Kang KW, Jung YH (2003) Grain size control of UO2 pellets by adding heat-treated U3O8 particles to UO2 powder. J Nucl Mater 317:204–211

    Article  Google Scholar 

  87. Lay KW, Carter RE (1969) Role of the O/U ratio on the sintering of UO2. J Nucl Mater 30:74–87

    Article  Google Scholar 

  88. Kutty TRG, Khan KB, Hegde PV, Sengupta AK, Majumdar S, Kamath HS (2003) Determination of activation energy of sintering of ThO2-U3O8 pellets using the master sintering curve approach. Sci Sinter 35:125–132

    Article  Google Scholar 

  89. Ganguly C (1993) Sol-gel microsphere pelletization—a powder-free advanced process for fabrication of ceramic nuclear fuel pellets. Bull Mater Sci 16:509–522

    Article  Google Scholar 

  90. Ganguly C, Basak U, Vaidya VN, Sood DD, Balaramamoorthy K (1992) SGMP-LTS process for fabrication of high density UO2 and (U,Pu)O2 fuel pellets. In: Proceedings of 3rd internatioanl conference on CANDU fuel, Chalk River

    Google Scholar 

  91. Ganguly C, Langen H, Zimmer E, Merz E (1986) Sol-gel microsphere pelletisation process for fabrication of high density ThO2-2%UO2 for advanced pressurized heavy water reactors. Nucl Technol 73:84–95

    Google Scholar 

  92. Vaidya VN, Mukerjee SK, Joshi JK, Kamat RV, Sood DD (1987) A study of chemical parameters of the internal gelation based sol-gel process for uranium dioxide. J Nucl Mater 148:324–331

    Article  Google Scholar 

  93. Suryanarayana S, Kumar N, Bamankar YR, Vaidya VN, Sood DD (1996) Fabrication of UO2 pellets by gel pelletization technique without addition of carbon as pore former. J Nucl Mater 230:140–147

    Article  Google Scholar 

  94. Pai RV, Mukerjee SK, Vaidya VN (2004) Fabrication of (Th, U)O2 pellets containing 3 mol% of uranium by gel pelletisation technique. J Nucl Mater 325:159–168

    Article  Google Scholar 

  95. Kumar N, Pai RV, Joshi JK, Mukerjee SK, vaidya VN, Venugopal V (2006) Preparation of (U, Pu)O2 pellets through sol–gel microsphere pelletization technique. J Nucl Mater 359:69–79

    Article  Google Scholar 

  96. Basak U, Nair MR, Ramchandran R, Majumdar S (2000). Fabrication of high density ThO2, ThO2-UO2 and ThO2-PuO2 fuel pellets for heavy water reactor. In: Annual conference of Indian nuclear society (INSAC-2000), p 170

    Google Scholar 

  97. Kutty TRG, Khan KB, Somayajulu PS, Sengupta AK, Panakkal JP, Kumar A, Kamath HS (2008) Development of CAP process for fabrication of ThO2-UO2 fuels. Part I: fabrication and densification behaviour. J Nucl Mater 373:299–308

    Article  Google Scholar 

  98. Kutty TRG, Kulkarni RV, Sengupta P, Khan KB, Bhanumurthy K, Sengupta AK, Panakkal JP, Kumar A, Kamath HS (2008) Development of CAP process for fabrication of ThO2-UO2 fuels. Part II: characterization and property evaluation. J Nucl Mater 373:309–318

    Article  Google Scholar 

  99. Kutty TRG, Somayajulu PS, Bhanumurthy K, Panakkal JP, Kumar A, Kamath HS (2009) Characterization of ThO2-UO2 fuels made by CAP process. In: International conference on the peaceful uses of atomic energy, New Delhi

    Google Scholar 

  100. Kutty TRG, Khan KB, Somayajulu PS, Sengupta AK, Sah DN, Panakkal JP, Majumdar S, Kamath HS (2005) Characterization of ThO2-UO2 fuels made by CAP Process. In: Characterization and quality control of nuclear fuels (CQCNF-2005), Hyderabad

    Google Scholar 

  101. Bakker K, Cordfunke EHP, Konings RJM, Schram RPC (1997) Critical evaluation of the thermal properties of ThO2 and Th1 − yUyO2 and a survey of the literature data on Th1 − yPuy02 J. Nucl Mater 250:1–12

    Article  Google Scholar 

  102. Catlow CRA, Lidiard AB (1974) In: Proceedings of symposium on themodynamics of reactor materials, vol II. IAEA, Vienna, p 27

    Google Scholar 

  103. Kutty TRG, Somayajulu PS, Khan KB, Kumar A, Kamath HS (2009) Characterization of (Th, U)O2 pellets made by advanced CAP process. J Nucl Mater 384:303–310

    Article  Google Scholar 

  104. Kutty TRG, Nair MR, Sengupta P, Basak U, Kumar A, Kamath HS (2008) Characterization of (Th-U)O2 fuel pellets made by impregnation. J Nucl Mater 374:9–19

    Article  Google Scholar 

  105. Feraday MA, Cotnam KD, Preto F (1979) Alternative method of making recycle fuel: impregnation of low density pellets. Am Ceram Soc Bull 58:12

    Google Scholar 

  106. Croixmarie Y, Abonneau E, Fernandez A, Konings RJM, Desmouliere F, Donnet L (2003) Fabrication of transmutation fuels and targets: the ECRIX and CAMIX-COCHIX experience. J Nucl Mater 320:11–17

    Article  Google Scholar 

  107. Haas D, Somers J, Renard A, Fuente AL (1998) Actinide and fission product partitioning and transmutation. In: Proceedings of 5th OECD/NEA information exchange meeting, Belgium

    Google Scholar 

  108. Fernández A, Richter K, Closset JC, Fourcaudot S, Fuchs C, Babelot JF, Voet R, Somers J (1999) Innovative materials in advanced energy technologies, Part C. In: Proceedings of 9th Cimtec-World forum on new materials, symposium VII, p 539

    Google Scholar 

  109. Fernández A, Richter K, Somers J (1998) Fabrication of transmutation and incineration targets by infiltration of porous pellets by radioactive solutions. J Alloy Compd 271:616–619

    Article  Google Scholar 

  110. Richter K, Fernández A, Somers J (1997) Infiltration of highly radioactive materials: a novel approach to the fabrication of targets for the transmutation and incineration of actinides. J Nucl Mater 249:121–127

    Article  Google Scholar 

  111. Boucharat N, Fernández A, Somers J, Konings RJM, Haas D (2000) Fabrication of zirconia based targets for transmutation. In: 6th IMF workshop, Strassbourg. (Prog Nucl Energy(2001) 38:291–294)

    Google Scholar 

  112. Richter K, Fernandez A, Somers J (1997) Infiltration of highly radioactive materials: a novel approach to the fabrication of transmutation and incineration targets. J Nucl Mater 249:121–127

    Article  Google Scholar 

  113. Fernandez A, Haas D, Konings RJM, Somers J (2002) Transmutation of actinides: qualification of an advanced fabrication process based on the infiltration of actinide solutions. J Am Ceram Soc 85:694–696

    Article  Google Scholar 

  114. Pai RV, Dehadraya JV, Bhattacharya S, Gupta SK, Mukerjee SK (2008) Fabrication of dense (Th, U)O2 pellets through microspheres impregnation technique. J Nucl Mater 381:249–258

    Article  Google Scholar 

  115. Melville AF (1975) Preparation of mixed oxide nuclear fuel. US Pat no. 40201311975

    Google Scholar 

  116. Harvey RL (1978) Method of fabricating nuclear fuel. US Pat no. 4110159

    Google Scholar 

  117. Khot PM, Nehete YG, Fulzele AK, Baghra C, Mishra AK, Afzal M, Panakkal JP, Kamath HS (2012) Development of impregnated agglomerate pelletization (IAP) process for fabrication of (Th, U)O2 mixed oxide pellets. J Nucl Mater 420:1–8

    Article  Google Scholar 

  118. Kaufman SF (1969) The hot-pressing behavior of sintered low-density pellets of UO2, ZrO2- UO2, ThO2, ThO2-UO2. WAPD-TM-751

    Google Scholar 

  119. Gardiner DA (1964) A study of the response contours of the hot-pressed thorium oxide pellets. ORNL-3608

    Google Scholar 

  120. Fitts RB, Moore HG, Olsen AR, Sease JD (1968) Sol-gel thoria extrusion. ORNL-4311

    Google Scholar 

  121. Kutty TRG, Hegde PV, Banerjee J, Khan KB, Jain GC, Sengupta AK, Majumdar S, Kamath HS (2003) Densification behaviour of ThO2-PuO2 pellets with varying PuO2 content using dilatometry. J Nucl Mater 312:224–235

    Article  Google Scholar 

  122. Kutty TRG, Khan KB, Hegde PV, Pandey VD, Sengupta AK, Majumdar S, Kamath HS (2002) Microstructure of ThO2-PuO2 pellets with varying PuO2 content p504. In: Ganguly C, Jayaraj RN (eds) Characterization and quality control of nuclear fuels. CQCNF-2002, Hyderabad

    Google Scholar 

  123. Rodriguez P, Sundaram CV (1981) Nuclear and materials aspects of the thorium fuel cycle. J Nucl Mater 100:227–249

    Article  Google Scholar 

  124. Rubbia C, Buono S, Gonzalez E, Kadi Y, Rubio JA (1995) A realistic plutonium elimination scheme with fast energy amplifiers and thorium-plutonium fuel. CERN/AT/95-53(ET)

    Google Scholar 

  125. Freshley MD, Mattys HM (1962) Properties of sintered ThO2-PuO2, Hanford Power Products Division, HW-76300

    Google Scholar 

  126. Freshley MD, Mattys HM (1963) Fast fuel development (classified), Hanford Power Products Division, HW-76302

    Google Scholar 

  127. Mulford RN, Ellinger FH (1958) ThO2–PuO2 and CeO2–PuO2 solid solutions. J Phys Chem 62:1466–1467

    Article  Google Scholar 

  128. Wriedt HA (1990) The O-Pu (oxygen-plutonium) system. Bull Alloy Phase Diagram 11:184–202

    Article  Google Scholar 

  129. Hj Matzke (1981) In: Sorensen T (ed) Non-stoichiometric oxides. Academic Press, New York, p 156

    Google Scholar 

  130. Catlow CRA (1987) Recent problems and progress in the study of UO2 and mixed UO2–PuO2. J Chem Soc, Faraday Trans 83:1065–1072

    Article  Google Scholar 

  131. Pritchard WC, Nance RL (1965) Studies on the formation of Pu2O3 in the sintering of PuO2. Los Alamos report LA-3493

    Google Scholar 

  132. Chikalla TD, McNeilly CE, Skavdahl RE (1964) The plutonium-oxygen system. J Nucl Mater 12:131–141

    Article  Google Scholar 

  133. Kutty TRG, Hegde PV, Khan KB, Majumdar S, Purushotham DSC (2000) Sintering studies on UO2–PuO2 pellets with varying PuO2 content using dilatometry. J Nucl Mater 282:54–65

    Article  Google Scholar 

  134. Kutty TRG, Khan KB, Hegde PV, Sengupta AK, Majumdar S, Purushotham DSC (2001) Densification behaviour and sintering kinetics of PuO2 pellets. J Nucl Mater 297:120–128

    Article  Google Scholar 

  135. Kutty TRG, Khan KB, Hegde PV, Banerjee J, Sengupta AK, Majumdar S, Kamath HS (2004) Development of a master sintering curve for ThO2. J Nucl Mater 327:211–219

    Article  Google Scholar 

  136. Kutty TRG, Khan KB, Hegde PV, Sengupta AK, Majumdar S, Kamath HS (2003) Determination of activation energy of sintering of ThO2-2%U3O8 pellet using master sintering curve approach. Sci Sinter 35:125–132

    Article  Google Scholar 

  137. Khan KB, Kutty TRG, Jarvis T, Hegde PV, Sengupta AK, Majumdar S, Kamath HS (2003) Master sintering curve for AHWR Fuel. In: 14th Annual conference, INS, Chennai, India

    Google Scholar 

  138. Johnson DL, Su H (1997) A practical approach to sintering. Am Ceram Soc Bul 76:72–76

    Google Scholar 

  139. Henrichsen M, Hwang J-H, Dravid VP, Johnson DL (2000) Ultra rapid phase conversion in beta-alumina tubes. J Am Ceram Soc 83:2861–2862

    Article  Google Scholar 

  140. Su H, Johnson DL (1996) Master sintering curve: a practical approach to sintering. J Am Ceram Soc 79:3211–3217

    Article  Google Scholar 

  141. Hansen JD, Rusin RP, Teng M, Johnson DL (1992) Combined-stage sintering model. J Am Ceram Soc 75:1129–1135

    Article  Google Scholar 

  142. Su H, Johnson DL (1996) Sintering of alumina in microwave- induced oxygen plasma. J Am Ceram Soc 79:3199–3201

    Article  Google Scholar 

  143. Thummler F, Thomma W (1967) The sintering process. Metall Rev 115:69–108

    Google Scholar 

  144. Coble RL, Burke JE (1963) Sintering in ceramics. In: Burke JE (ed) Progress in ceramic science, vol 3. Pergamon, Oxford, pp 197–251

    Google Scholar 

  145. Kuczynski GC (1949) Self-diffusion in sintering of metallic particles. Trans Am Inst Min Met Eng 185:169–178

    Google Scholar 

  146. Shiba K (1992) Diffusion processes in thoria and thorium based oxides with emphasis on fission fragments, irradiation effects. In: Ararwala RP (ed) Diffusion processes in nuclear materials. North Holland, Amsterdam

    Google Scholar 

  147. Ray A, Banerjee J, Kutty TRG, Kumar A, Banerjee S (2012) Construction of master sintering curve of ThO2 pellets using optimization technique. Sci Sinter 44:147–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mukerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mukerjee, S.K., Kutty, T.R.G., Kumar, N., Pai, R.V., Kumar, A. (2013). Fabrication Technologies for ThO2-based Fuel. In: Das, D., Bharadwaj, S. (eds) Thoria-based Nuclear Fuels. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5589-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5589-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5588-1

  • Online ISBN: 978-1-4471-5589-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics