Skip to main content

Algebraic Graph Theory and Cooperative Control Consensus

  • Chapter
  • First Online:
Cooperative Control of Multi-Agent Systems

Abstract

Cooperative control studies the dynamics of multi-agent dynamical systems linked to each other by a communication graph. The graph represents the allowed information flow between the agents. The objective of cooperative control is to devise control protocols for the individual agents that guarantee synchronized behavior of the states of all the agents in some prescribed sense. In cooperative systems, any control protocol must be distributed in the sense that it respects the prescribed graph topology. That is, the control protocol for each agent is allowed to depend only on information about that agent and its neighbors in the graph. The communication restrictions imposed by graph topologies can severely limit what can be accomplished by local distributed control protocols at each agent. In fact, the graph topological properties complicate the design of synchronization controllers and result in intriguing behaviors of multi-agent systems on graphs that do not occur in single-agent, centralized, or decentralized feedback control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brewer J (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circuits and Systems 25(9):772–781

    Google Scholar 

  2. Brogan WL (1990) Modern Control Theory, 3rd edn. Prentice-Hall, New Jersey

    Google Scholar 

  3. Diestel R (2000) Graph Theory. Springer-Verlag, New York

    Google Scholar 

  4. Fax JA, Murray RM (2004) Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control 49(9):1465–1476

    Article  MathSciNet  Google Scholar 

  5. Godsil C, Royle GF (2001) Algebraic Graph Theory. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  6. Horn RA, Johnson CR (1985) Matrix Analysis. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  7. Jadbabaie A, Lin J, Morse S (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001

    Article  MathSciNet  Google Scholar 

  8. Lee D, Spong MW (2007) Stable flocking of multiple inertial agents on balanced graphs. IEEE Trans Autom Control 52(8):1469–1475

    Article  MathSciNet  Google Scholar 

  9. Moreau L (2005) Stability of multiagent systems with time-dependent communication links. IEEE Trans Autom Control 50(2):169–182

    Article  MathSciNet  Google Scholar 

  10. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  11. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  Google Scholar 

  12. Olshevsky A, Tsitsiklis JN (2009) Convergence speed in distributed consensus and averaging. SIAM J Control Optim 48(1):33–55

    Article  MATH  MathSciNet  Google Scholar 

  13. Qu Z (2009) Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. Springer-Verlag, London

    Google Scholar 

  14. Ren W (2007) Consensus strategies for cooperative control of vehicle formations. IET Control Theor Appl 1(2):505–512

    Article  Google Scholar 

  15. Ren W, Beard RW (2005) Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control 50(5):655–661

    Article  MathSciNet  Google Scholar 

  16. Ren W, Beard RW (2008) Distributed Consensus in Multi-Vehicle Cooperative Control Springer-Verlag, London

    Google Scholar 

  17. Ren W, Beard R, Atkins E (2005) A survey of consensus problems in multi-agent coordination. In: Proc. Amer. Control Conf., Portland, OR, pp. 1859–1864.

    Google Scholar 

  18. Ren W, Atkins E (2007) Distributed multi-vehicle coordinated control via local information exchange. Int J Robust Nonlinear Control 17(10–11):1002–1033

    Article  MATH  MathSciNet  Google Scholar 

  19. Reynolds CW (1987) Flocks, herds, and schools: A distributed behavior model. Comput Graphics 21(4):25–34

    Article  Google Scholar 

  20. Shoham Y, Leyton-Brown K (2009) Multiagent Systems. Cambridge University Press, New York

    MATH  Google Scholar 

  21. Taussky O (1949) A recurring theorem on determinants. Am Math Mon 56(10):672–676

    Article  MATH  MathSciNet  Google Scholar 

  22. Tsitsiklis J, Bertsekas D, Athans M (1986) Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans Autom Control 31(9):803–812

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu CW (2007) Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, Singapore

    Book  MATH  Google Scholar 

  24. Xie G, Wang L (2007) Consensus control for a class of networks of dynamic agents. Int J Robust Nonlinear Control 17(10–11):941–959

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank L. Lewis .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lewis, F., Zhang, H., Hengster-Movric, K., Das, A. (2014). Algebraic Graph Theory and Cooperative Control Consensus. In: Cooperative Control of Multi-Agent Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-5574-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5574-4_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5573-7

  • Online ISBN: 978-1-4471-5574-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics